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Abstract

Fully polarized Xpatch signatures are transformed to two left circularly polarized signals. These

two signals are then filtered by a linear FM pulse compression ('chirp') transfer function, corrupted by

AWGN, and filtered by a filter matched to the 'chirp' transfer function. The bandwidth of the 'chirp'

radar is about 750 MHz. Range profile feature extraction is performed using the TLS Prony Model

parameter estimation technique developed at Ohio State University. Using the Prony Model, each

scattering center is described by a polarization ellipse, relative energy, frequency response, and range.

This representation of the target is vector quantized using a K-means clustering algorithm. Sequences

of vector quantized scattering centers as well as sequences of vector quantized range profiles are used

to synthesize target specific Hidden Markov Models (HMM's). The identification decision is made by

determining which HMM has the highest probability of generating the unknown sequence. The data

consist of synthesized Xpatch signatures of two targets which have been difficult to separate with other

RTI algorithms. The RTI algorithm developed for this thesis is clearly able to separate these two targets

over a 10 by 10 degree (1 degree granularity) aspect angle window off the nose for SNRs as low as 0

dB. The classification rate is 100 % for SNRs of 5 - 20 dB, 95 % for a SNR of 0 dB and it drops rapidly

for SNRs lower than 0 dB.

xi



HIGH RANGE RESOLUTION RADAR TARGET IDENTIFICATION

USING THE PRONY MODEL AND

HIDDEN MARKOV MODELS

L. INTRODUCTION

1.1 Background

In air-to-air engagements between high-performance fighter aircraft, positive and timely iden-

tification of targets is critical. In the absence of a cooperative identification system and less than

adequate intelligence, target identification must be deduced from backscattered electromagnetic energy

(30). Targets without cooperative identification systems, such as Identification Friend or Foe (1FF)

transponders, are called non-cooperative targets.

The backscattered or emitted electromagnetic energy from a non-cooperative target of interest

can be detected by a number of systems depending on the characteristics of the signal. If the target

is within visual range, the backscattered electromagnetic energy (light in this case) can be sensed by

the pilot's eyes and processed by the most powerful identification system known - the human visual

system. However, if the target is at a relatively long range, the backscattered electromagnetic energy

must be measured electronically. Radar is well suited for this task. The target is illuminated with a

well defined signal and the backscattered electromagnetic energy (radar return) is then detected by a

receiver which is optimized to process the radar return. Non-cooperative target recognition (NCTR)

with radar is designated Radar Target Identification (RTI).

Historically, radar has been used to estimate the relative range, direction, and velocity of targets

of interest (26). Although these parameters give significant information about the target, they cannot

- by themselves - be user to identify the object. Unlike the conventional radars which are used to

estimate relative position ad velocity, High Range Resolution (HRR) radar is specifically designed to

resolve the target in range along the radar-target vector. Range resolution is defined as the minimum

distance between two point targets at which they can discerned as two distinct targets (26). In other

I-1



words, if the range resolution is one meter; point targets separated by less than a meter will appear as

one target. In general, the range profile is created by dividing the return into range bins the size of the

range resolution of the radar.

As stated previously, the radar illuminates the target and receives the backscattered signal to

yield the range profile, location, and velocity of the target. The range profile is sent to a feature

extraction process which outputs a set of descriptive parameters which concisely describe the target.

The approximate target/radar aspect angle (the direction at which the target is being illuminated) is

estimated from the location and velocity of the target via the tracking process. Finally, the decision

process chooses the target identification based on the range profile feature set and knowledge of the

target/radar aspect angle.

1.2 Problem Statement

This thesis will develop a reliable RTI algorithm which uses a real aperture (as opposed to

synthetic aperture) HRR radar as a sensor. This RTI algorithm will be designed to perform on-

board identification during air-to-air engagements between fighter aircraft as depicted by Figure 1.1.

For realistic operational scenarios, the RTI algorithm must perform the identification process with a

minimum number of measurements for near-real-time target identification.

1.3 Summary of Current Knowledge

Research in the area of Radar Target Identification (RTI) spans a broad range of radar types

and classification algorithms. Libby presents a comprehensive summary of the start-of-art of RTI

(17). What follows is an overview of the research areas which are most applicable to RTI algorithms

developed for this thesis.

1.3.1 Variability of HRR Radar Profiles and Some Implications for Target Recognition Cohen

(4) provides some valuable insight as to the general nature of the narrow band radar cross section (RCS)

of complex targets such as aircraft and how the RCS relates to the wideband HRR radar range profiles

of these targets. To quote Skolnik, "the RCS of a target is the (fictional) area intercepting that amount

of power which, when scattered equally in all directions, produces an echo at the radar equal to that

from the target (26)." That is to say, if a target reflects the same energy back to the radar as a perfectly
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Portion of fte Aspect Angle Space
Used to Train the Classifier

Figure 1. 1. Operational Scenario

conducting sphere (which scatters isotropically) whose cross section is I m2 , the RCS of that target is

lm 2 .

The narrowband RCS of an aircraft or any other complex target is extremely dependent on aspect

angle and therefore, cannot be reported as a single quantity. Thus, RCS is usually reported for a single

frequency in a polar plot as a function aspect angle (4) (26). If the RCS is modeled as a random process,

it is not uncommon to find that it can completely decorrelate every 0.20 change in aspect angle. Because

of this sensitivity to aspect angle, Cohen states that RTI algorithms may require inordinate amounts of

both data for training and memory for implementation (4).
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Cohen showed that the the energy contained within the range profile changes with the same

variability as the narrowband RCS, but general shape of the wideband range profile is less susceptible

to changes in aspect than the RCS. However, the shape of the range profile is still very sensitive to

changes in aspect angle. Therefore, it may be advantageous, from an RTI perspective, to normalize the

energy of the range profiles to prevent their amplitudes from changing as the RCS changes. However,

the loss of information which is contained in the absolute RCS and how it changes with aspect angle

may negate the net improvement gained by this normalization (4).

1.3.2 Recognition of Targets Using Sequences of Range Profiles and Knowledge of Aspect

Angle Libby, who is currently conducting RTI research at AFIT, has shown that the aspect angle of

an aircraft in stable flight can be estimated to a high degree using the information available from a

tracking system (16). In this light, he suggests that if the aspect angle is known, target identification

will be improved if the classifier excludes possible matches to targets whose templates are known to

be outside the tolerance of the aspect angle estimate. More importantly, Libby also states that if the

classifier makes use of the temporal relationships between range profiles in a sequence, coupled with

the knowledge of the aspect angle of the target during that sequence, the classification performance

will be better than identification based on individual range profiles treated as independent events. Also,

Libby suggests that Hidden Markov Models, which have been used for speech processing, may be

useful for processing these temporally related range profile sequences (17).

1.3.3 General Dynamics RTIResearch General Dynamics (GD) conducted RTI research using

HRR under contract with the USAF's Wright Laboratory (1) (28). The algorithm developed by GD was

based on a "slide distance metric" between range profiles from a known target and range profiles from

an unknown target. Range profiles were gathered for an actual target at discrete angles and processed

to extract the significant peaks along the radar/target vector. This reduced data set consisted of the

most prominent peaks and was stored as a target template from which the unknown range profiles were

matched. The "slide distance metric" was calculated by aligning the two range sweeps in each of four

different ways - aligning the first peak of the unknown peak with the first peak of the template sweep,

aligning the second peak of the unknown sweep with the second peak of the template sweep, and so

on through a fourth peak-to-fourth peak match. This peak-to-peak comparison was performed for all

the stored target templates and the target identification corresponded to the minimum slide distance.

1-4



Depending on the complexity of the target, several templates at different aspect angles must be available

for each target.

1.3.4 Target Identification Using Polarization-Diverse Features Chamberlain used the fully

polarized signatures to generate the transient polarization response (TPR) of the target (2). The TPR is

generated by illuminating the target with an impulse of a circularly polarized wave. As the wave interacts

with each scattering center on the target, each scattering center reflects a wave with a polarization that

is determined by the polarimetric characteristics of that scattering center. The individual scattering

centers were estimated nonparametrically using the Inverse Fast Fourier Transform (IFFT) of the

discrete or stepped frequency response of the target. Chamberlain found that the polarization derived

from the TPR related well with the shape and orientation of the major scattering centers distributed

in the downrange profile of the target. The TPR features of five commercial aircraft range profiles

were classified using K-nearest neighbor (KNN) technique. At a single aspect angle, the correct target

identification was made 97% of the time for signal to noise ratios (SNR) as low 0 dB.

1.3.5 High Resolution Exponential Modeling of Fully Polarized Radar Returns In Chamber-

lain's work, nonparametric techniques for extracting the scattering centers was developed. Sacchini

and Steedly (25) (27) developed a parametric method to locate scattering centers which was based on

the Prony Model (23). Like the research of Chamberlain, each scattering center is characterized by

a polarization ellipse which corresponds to the back scattered polarization from a circularly polarized

wave. Specifically, the IFFT method and the Prony method were compared (25). Except for computa-

tional cost, the performance of the Prony model was superior to the conventional IFFT techniques. In

fact, the Prony model estimated the polarization ellipses of the dominant scattering centers of various

aircraft with reasonable accuracy at 0 dB SNR.

1.3.6 Automatic Targetidentification Based on Models ofNeural Networks There are a number

examples where neural networks have been used for RTI. Farhat (8) trained a neural network with

sinograms of scale models of a B-52, AWACS, and the Space Shuttle. A sinogram is a Cartesian plot of

the measured relative range of scattering centers on the object versus aspect angle. Farhat found that the

neural network was able to correctly identify the target with as little as 10% of the sinogram. Although

the findings are significant, they may be of limited value because the sinogram used for training and
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identification was generated by targets rotating smoothly through a range of azimuth angles at a constant

elevation angle about the plane of the wings.

1.3.7 Hidden Markov Models Traditionally, Hidden Markov Models (HMM's) have been used

for isolated word recognition (IWR) (11) (12) (13) (15) (20) (21) (22). For this purpose, words to be

identified are modeled using a HMM - one HMM per word in IWR applications- and the correct word

is then chosen by determining which model had the highest probability of generating the unknown

word. HMM's have been used for IWR with excellent results when compared to other techniques (12)

(21) (22). It appears that HMM's, and in particular left-right HMM's, are well suited for HRR RTI

because the temporal relationship of scattering centers are inherently represented by the HMM state

transitions (22).

1.4 Scope

Previous work will be drawn upon for all phases of the RTI process development. The basic

theory of HRR radar has been developed for over 30 years (5) and equations derived from this

knowledge base will be implemented in software. However, no attempt will be made to emulate any

specific HRR radar that has been implemented in hardware. Also, the High Resolution Exponential

Modeling of stepped frequency range profiles developed by Sacchini and Steedly (25) (27) will be be

used for feature extraction with little modification. Therefore, the primary focus of this research will

be on the actual classification algorithms. The RTI system developed for this thesis will be designed to

identify two fighter class aircraft over the limited aspect angle window depicted by Figure 1.1.

1.5 Assumptions

The HRR RTI problem is further defined and scaled by the following assumptions:

"* The tracking system can estimate the aspect angle to within a 100 by 100 azimuth and elevation

window in the aspect angle space as shown in Figure 1.1 (16).

"* The range profile is corrupted by additive white Gaussian noise and is free of other types of noise

associated with clutter (26).
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"* The operating frequency of the radar is approximately 10 GHz so that an antenna with adequate

gain can be mounted on the aircraft (9).

"* The radar is locked on to the target so that multiple range profiles will be available for target

identification in a relatively short period of time (16).

1.6 Approach and Methodology

Software systems are currently available which - when given a detailed description of a complex

target such as an aircraft - can accurately predict the range profile of the target at an arbitrary aspect

angle (3). However, the reverse process by which the detailed structure of a complex target is

determined at an arbitrary aspect angle from its range profile cannot be reliably performed. The reverse

process is difficult to perform because scatterers at a given range have an arbitrary phase so that they

reinforce or cancel stochastically. Also, scatterers may be illuminated by more than one signal path

as energy reflects from one scatterer to another before returning to the radar. Both of the processes

described above are very dependent on aspect angle. In general, processes which are too complex to

be represented by a deterministic model must be modeled as random phenomenon (6). Therefore, the

RTI system developed in this thesis will be based on the stochastic properties of th& range profiles and

how the range profiles change with aspect angle.

1.6.1 Range Profile Feature Extraction and Vector Quantization Range profiles will be pro-

cessed using the Prony Technique developed by Steedly and Sacchini (25) (27). Using this technique

each scattering center is described by a polarization ellipse, relative energy, frequency response and

range. The data is reduced by vector quantizing to clustering centers. The clustering centers will be

chosen using a K-means clustering algorithm.

1.6.2 Target Identification In general, target identification will made based on the temporal

relationships between scattering centers of single range profiles as well as the temporal relationships

between sequences of range profiles. One HMM per class will be used to model single range profiles

over the entire aspect angle window of interest. Identification of unknown targets will be realized

by determining the HMM which has the highest probability of generating the unknown target's range

profile. If identification is made based on sequences of range profiles, multiple HMM's per class will
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be used and the identification decision will be reached according to which group of HMM's has the

highest probability of generating the sequence of range profiles.

1.6.3 HRR Radar Signature Synthesis Actual HRR radar signatures are not readily available.

Therefore, synthesized HRR radar returns will be used for this thesis. A number of software packages

that generate HRR radar range profiles are available. One such package is Xpatch which calculates

the frequency-domain RCS of a faceted target by geometric optical ray casting with multiple bounce

technique (3). Range profiles produced by Xpatch will form the data set for this research.

The Xpatch range profiles are fully polarized, in that four range profiles are generated for each

signature calculation: vertical transmit/vertical receive; vertical transmit/horizontal receive; horizontal

transmit/horizontal receive; and horizontal transmit/horizontal receive. The four range profiles are

represented in the frequency domain and consist of 1024 discrete frequency samples from approximately

9.25 to 10.75 GHz. In the time-domain, the range profiles are divided into 0.1 meter range bins covering

a total of 102.4 meters per range profile. The incident plane wave used to calculate the signatures in

Xpatch is non-causal and therefore, is not physically realizable in hardware(18).

In other words, the signature generated by Xpatch is essentially the impulse response of the

target over the 1.5 GHz bandwidth. Therefore, more realistic signatures can be obtained by adding

white Gaussian noise to the signatures and convolving them with a transfer function of a causal HRR

radar such as a Linear Frequency Modulated pulse compression (26) HRR radar whose bandwidth is

less then 1.5 GHz.

1.7 Research Objectives

This thesis will investigate means to exploit HRR radar range profiles for the purpose of target

identification. The focus of the research will be on an efficient and reliable means to represent a given

target using Prony's Model and HMMs. The specific objectives of this research effort are follows:

"* To develop a reliable RTI algorithm which is designed to identify targets using a Linear FM

pulse compression HRR radar as a sensor.

"* To characterize the RTI algorithm by measuring its susceptibility to additive white Gaussian

noise (AWGN) and range alignment errors caused by imperfections in the tracking system.
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1.8 Thesis Organization

The organization of this thesis is given below.

"* The detailed background material pertaining to the major components of the RTI algorithm

developed for this thesis is reviewed in Chapter I1.

"* The RTI algorithm description is found in Chapter ElI.

"* Chapter IV contains the experimental procedures and results.

"* The conclusion and recommendations are given in Chapter V.

1.9 Summary

In the fast paced environment of air-to-air combat, positive and timely target identification is

critical. Although HRR radar is possible with current technology, RTI using HRR radar signatures is

an unsolved problem. Current research has shown that features based on the polarization of the target's

scattering centers correspond well to the physical structures of the target. Therefore, these features

should be useful for RTI. Given an accurate feature set and a reliable identification algorithm, RTI in a

realistic combat environment will become a reality.
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IL BACKGROUND

2.1 Introduction

Radar Target Identification (RTI) research spans a broad range of radar types and classification

algorithms. This background material presented in this chapter will focus on RTI based on High Range

Resolution (HRR) radar signatures. The following areas will be reviewed:

* HRR radar

e High resolution exponential modeling of fully polarized radar returns

* Hidden Markov Models

* Classification performance clarification

2.2 High Range Resolution (HRR) Radar

As stated in Chapter I, HRR radar is specifically designed to resolve the target into many parts

as a function of range along the radar-target vector. The range from the radar to the target along the

radar-target vector is determined by measuring the time delay between the transmitted signal and the

received backscattered signal from the target. The range is computed using the propagation velocity

of the transmitted signal. Hence, the range is given by

S= Ctd (2.1)
2

r E range: m

c speed of light in free space: 3 x 108 m/s

td -time delay: s.

The 2 in the denominator accounts for the propagation of the transmitted signal to and from the target.

If a certain radar transmits a rectangular pulse with a pulse width -r seconds, the range increment or

range resolution is 6r = c-r/2, and two point reflectors separated by distances greater than 6r can be

resolved as two distinct targets. The bandwidth B of a -r second rectangular pulse is approximately
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B = 1/'r, and the range resolution is usually expressed in terms of B so that (26)

C

br = -(2.2)2-B

6r range resolution

B bandwidth of the transmitted signal.

Obviously, HRR can be achieved by transmitting a very narrow pulse (r = 667 ps for br = 0.1 m),

but the maximum range of a narrow pulse HRR radar is limited by the low energy of the transmitted

pulse.

Therefore, HRR radar design is constrained by two opposing parameters: the energy and band-

width of the transmitted pulse. Increasing the transmitted pulse width increases the energy but also

decreases the bandwidth which in-turn decreases the range resolution. Two schemes for realizing HRR

radar capable of detecting targets at ranges suitable for RTI are discussed below.

2.2.1 Synthetic HRR Radar As shown by Equation (2.2), r is limited by B. Synthetic HRR

radar realizes the necessary bandwidth for HRR by measuring the steady state response of the target at

discrete frequencies over the required bandwidth. Thus, the frequency domain response of the target is

represented by a set of scattering coefficients which are measured at discrete frequencies

S (fk - fmin)Af] = S[k], k = 0, 1, 2,..., N - 1 (2.3)

k integer index

N number of samples

f -- frequency

min - minimum frequency of the sequence

f. sampling rate in the discrete time domain (at least the bandpass Nyquist rate)
1.

Af frequency step size: N
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the range resolution expressed in terms of Af and N is

C
6r = (2.4)

2(N - 1)Af

The range profile of the target is the inverse Discrete Fourier Transform (DFT) of S[k], or

1 N-i
s[n] = y E SS[kJelT, n= 0,1,2,...,N- 1. (2.5)

k=O

In the discrete time domain, td = n/f. and the discrete range is

cn
rn = 2 (2.6)

While the classical definition of unambiguous range is related to the pulse repetition time (prt) or the

time between transmitted pulses of the radar, because s[n] is periodic with a period of N, the maximum

unambiguous range for synthetic HRR radar is limited to

cN c
S= =f. 2Af (2.7)

If a range resolution of 0.1 meters is desired, by Equation ( 2.2 ) B must be 1.5 GHz and f.- for the

bandpass Nyquist rate - must also be at least 1.5 GHz. For N = 1024, the maximum unambiguous

range RE is only 102.4 meters. If, for example, the target is at 50 Kmi, S[k] must be measured at

the proper time delay. That is, S[k] is windowed in time by a window that is centered on the target.

However, the range extent of the target must be less then RE to prevent aliasing in the discrete range

domain.

Synthetic HRR radar is very useful for test facilities where the target is stationary because

it essentially measures the finite bandwidth impulse response of the target. However, the utility of

synthetic HRR radar for RTI of aircraft outside the laboratory is limited because the aircraft would

generally be at a different location and aspect angle for each frequency measurement. It is possible,

however, to approximate the impulse response of the target over a finite bandwidth if the transmitted

signal is relatively wide pulse which is continuously swept across the frequency band (26). This process

is described in the following section.
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2.2.2 Linear FM Pulse Compression As stated previously, HRR design is constrained by

the energy and bandwidth of the transmitted pulse. Pulse compression HRR radars realize HRR by

modulating a relatively wide, and therefore, high energy pulse with a signal that has symmetric, narrow

peaked autocorrelation properties. Two such examples of signals with these autocorrelation properties

are the Barker code and linear FM modulation waveforms (26). What follows is a description of pulse

compression using a linear FM modulated or 'chirped' transmitted pulse employed by many modem

HRR radars (26). The derivations of the linear FM pulse compression equations stated below can be

found in reference (5). Analytically, the transmitted pulse is

(t) = Cos (2rf [ 2 + JIt - dt) rect ( 2 (2.8)

= cos ((t)) rect ([It T2)

f, E carrier frequency

T pulse width

Bfm bandwidth

The instantaneous frequency for 0 _< t < T is dl') or

+= f + m--T t- T < t < T. (2.9)

Therefore, the frequency of the pulse is linearly swept from (fý - B../2) to (fc + B,../2). Taking

the Fourier Transform of f(t) to represent the transmitted signal in the frequency-domain gives

F(f) = U {[C(zi)+ ( +[S(X,) + S(X )}12

exp {--(21fc - 24f)2 + j tan-' • + }(X2) (2.10)
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where

U -• 2rBym
T

1 - 2 r(fý - f)
X2 2 f--

and S(x) and C(x) are Fresnel integrals

C(x) - cos (2 a)da

S(x) - f sin (jc2) da .

Recall that the transmitted signal, F(f), has symmetric, narrow peaked autocorrelation prop-

erties. Thus, filtering the received signal with a filter matched to F(f) compresses the the received

pulses. The matched filter output, which is denoted as S(f) = F(f)F*(f), is a sampling function

in the discrete time domain whose first null is at 1/Bfm. Therefore, the range resolution is c/2Bfm

and the transmitted pulse appears to be an unmodulated rectangular pulse which has a pulse width of

7 = 1/Bfm seconds. Hence, the pulse compression ratio is expressed as r/T. In general, a higher

pulse compression ratio decreases the magnitude of U which increases the sharpness of the roll off of

F(f) (5).

2.3 High Resolution Exponential Modeling of Fully Polarized Radar Returns

Scattering centers along the range profile of HRR radar signatures can be modeled parametrically

by an exponential model (25) (27). This model is referred to as Prony's model. L sing Prony's model,

the range profile of the target is described by T scattering centers, each characterized by Ipt, I (frequency

response), ARt. (polarization ellipse axis ratio),;,t, (polarization ellipse tilt angle), Et. (energy), and

rt. (range). The parameter estimation techniques developed by Sacchini and Steedly have overcome

the adverse affects of noise which usually limits the usefulness of the Prony model (25) (27).

It is assumed that the the frequency domain response of the target is represented by a fully

polarized set of scattering coefficients which are measured (for synthetic HRR) or sampled (for Linear
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FM Pulse Compression HRR) at discrete frequencies k = 0, 1, 2, ... , N - 1. These coefficients are

denoted as S,,[k] , Svh[k], Sh. [k), and Shh[k], where the first subscript corresponds to the receive

polarization (h for horizontal and v for vertical polarization) and the second subscript corresponds to the

transmit polarization. The four transmit/receive polarization combinations can be used to synthesize

any arbitrary polarization desired. Left circular polarization is synthesized by the following transform

(29):

s.,[k] = s, ,[k] s..[k] 2 2.l

The subscripts (hl) and (vl) on the left side of Equation (2.11) correspond to a horizontally received

and vertically received left circularly polarized transmitted signal.

As shown in Section 2.2.1, the range profile, s8,[r.] (xy is hi or vl), can be found using

Equations (2.5) and (2.6), and Equation (2.5) is efficiently computed with a Fast Fourier Transform

(FFT) routine. Except for computational cost, the performance of the Prony model is superior to the

conventional Inverse Fast Fourier Transform (IFFT) techniques because it yields higher range resolution

for the same bandwidth and it models the frequency response of individual scattering centers. Using

the IFFT to calculate range profiles, each range resolution cell (n index) is modeled with a constant

frequency response over all frequencies k = 0, 1,2, ... , N - 1 because the kernel of ( 2.5) has a

magnitude of 1. Although a perfect sphere has a constant frequency response, realistic scattering

centers do not display a constant frequency response. For example, the frequency response of a

tribedral increases linearly as frequency increases (25). In this section the definitions of the Prony

model parameters and the procedure to estimate these parameters is presented.

2.3.1 Pronys Model The Prony model (23) of the fully polarized frequency data given in

Equation (2.11) is

) -pt., k=0,1,2,...,N-1. (2.12)
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where

pg. pole of the nth scattering center (generally complex)

aht. amplitude coefficient of the horizontally received nth scattering center

a,,. -amplitude coefficient of the vertically received nth scattering center

T number of scattering centers

N number of discrete frequencies

Clearly, Equation (2.12) is similar to Equation (2.5). If the nth pole corresponds to an ideal point

scatterer, IPt. I = 1, but for more realistic scatterers with frequency responses that are not constant,

Ipt. I will vary slightly around 1. The relative range of the nth scattering center is associated with the

angle of pt., pt., and is computed as

rt. = REý--, 0 < rt. _ RE- (2.13)
2vr

RE is the unambiguous range given by Equation ( 2.7). The energy of the nth scatterer is calculated as

Et.= (aht.•2 + la,,t.12 ) N It,.Ik n = 1,2,..., (2.14)

The polarization information is contained in the vertical and horizontal amplitude coefficients,

aht. and at.. The polarization of the nth scattering center is an ellipse which can be represented

by the Poincarn Sphere (14). The polarization ellipse parameters are calculated with the following

equations:

\tan-' 0 ' -j_ (2.15)

bt. = La~t. -/ahg., -wr < b. <_ w (2.16)

(I. = •sin' [sin(2"y,,.)sin(gj.)], -- < f,. < - (2.17)
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A complete and compact description of the shape of the polarization ellipse is given by the tilt angle,

ri,, and the major to minor axis ratio ARt..

1 •
fT = •tan-' [tan(27,t.)cos(6,.)], 0 < ri, <_ 7 (2.18)

AR8. = cot(et.), -oo :_ AR,. <_ +oo (2.19)

Although Tt. ranges from 0 to 7r, it. is limited to 7r/2 in ( 2.18) because only one quarter of the

Poincart Sphere is used. To avoid this ambiguity, the following alterations to rt. need to be made (27):

rT2 = { (2.20)
rt. + r if 1t.- 4 and TN < 0

For left-handed polarization et. >_ 0 and 0 < ARt. :_ +oo.

The set of parameters { Ipt. 1, ARt., rt., Et., rt.; n = 1, 2.- -, T} forms a concise description

of each scattering center of the target. The target is described by T such scattering centers.

2.3.2 Parameter Estimation Parameter estimation is required to estimate the poles and am-

plitude coefficients from the frequency data. The following algorithm for estimating the poles and

amplitude coefficients was developed at Ohio State University (25) (27). The poles are estimated

using a backward linear prediction approach which uses a Singular Value Decomposition (SVD). The

backward linear prediction equation simultaneously uses both the horizontal and vertical polarizations

2-8



and is written as

Sh[O] Shl] ShI[2] ... S.,[Q]

ShIfl] Sh,[2] Sh,[3] ... Shl[Q + 1]

b,

ShI[N -1- Q] ShI[N - Q] ShI[N - Q + I] ... Sh,[N -1] b2  0 (2.21)

S.1[o] s.1] 5,[2] ... S.[Q]

S,[1] S.1[2] S.1[3] ... S.[Q + 1]: : : : •bQ

S.I[N- 1 -Q] S.,[N -Q] S,,[N- Q+I]1 ... S.,[N- 11

or

S 0. (2.22)b

K is the number of discrete frequencies, Q is the prediction order, and b is the coefficient vector of the

polynomial B(z) given by

B(z) = 1 + blz- 1 + b2z- 2 +... + bQz-Q (2.23)

1/1B(z) describes an all pole filter in the z-transform domain that has Q poles. The prediction order,

Q, is ideally an integer greater than the model order T. Prior to solving b, S is expanded by a SVD so

that

S = UEVH (2.24)

where VH denotes the Hermitian transpose (or conjugate transpose) of V andOr 0 }
E = ( 2 (2.25)

0 2Q+-
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The singular values of S are ordered form largest to smallest ( a, > a2 > ... > aQ+ ). S is noise

cleaned by keeping the first T singular values and setting the remaining singular values to zero so that

0

a2

=aT (2.26)

0

0 0

Note that • has the same dimensions as E. Now the noise cleaned version, S, is formed by

S = UVR (2.27)

Now S is written as [91 92] where Sk is a column vector consisting of the first column of S and

k2 is a matrix consisting of the remaining columns of S. The estimate of b, G, is then found by using

a least squares solution, which is written as

2 9('f'~' . (2.28)

Finally, the estimated poles are found by solving for the roots of b(z) as

Itq q = 1,2,... ,Q. (2.29)
rOot.(R(z))'

Although there are Q roots of B(z), only T of those roots corresponds to data modes because only T

singular values of S are nonzero. Determining which of the Q poles are valid is accomplished in two

steps. First, poles that do not fit the following criteria are discarded.

1 < I 1gN < 100. (2.30)
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The above criteria has been found to model radar data well (27). After the invalid poles have been

discarded, the T poles with highest energy are retained. From Equation (2.14), the energy calculation

requires both the horizontal and vertical amplitude coefficients.

Writing Equation ( 2.12) in matrix form gives

I P .... l S 1 so] [0
2h:[N -](2.31)

PIQ I2 SAi[

or

PQ, Aq = S. (2.32)

Q' is the number of poles which satisfy the criterion of Equation ( 2.30). A is found using a least

square solution as

AQ, = ( ,IPQ,) P' ,S.. (2.33)

The energy of each of the Q' poles is calculated using Equation (2.14) and the T poles with the highest

energy are retained. The parameter estimation procedure is terminated by reestimating the amplitude

coefficients of the T true poles such that

AT = H (P T -- 1
THS. (2.34)

2.4 Hidden Markov Models

HMM's have been explored by a number of researchers since 1975 (19). Rabiner (11) (13) (20)

(21 )(22) and Levinson (15) have written HMM tutorials which have been summarized in Voice and

Speech Processing by Parsons (19). The purpose of this section is to present the general HMM theory

applicable to RTI. Most of the HMM theory in this section is drawn from Rabiner's, A Tutorial on

Hidden Marlnv Models and Selected Applications in Speech Recognition (22) and the notation will,

for the most part, correspond to Rabiner's notation in that article.
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2.4.1 HMM Background Real-world processes produce observable outputs which are charac-

terized as signals. In a broad sense, signal models can be separated into two classes: deterministic and

statistical. A sine wave, for example, is characterized by a deterministic signal model that is completely

specified by amplitude, frequency, and phase; all of which are fixed parameters. On the other hand,

statistical signal models characterize the signal's statistical properties. Gaussian and Poisson signal

models are two well known statistical signal models (6). The underlying assumption of any statisti-

cal model is that the signal can be well characterized as a parametric random process, and that the

parameters of this stochastic process can be determined (estimated) in a precise, well-defined manner

(22).

The HMM is also a statistical signal model and is defined as (21),

"... a doubly stochastic process with an underlying stochastic process that is not observed
(it's hidden), but can only be observed through another set of stochastic processes that
produce the sequence of observed symbols."

In this section the theory of Markov chains will be presented and then extended to HMM's. After the

concepts of HMM's are introduced three fundamental problems for HMM design will be discussed in

detail.

2.4.2 Markov Chains A Markov chain is a system which is described at any time as being in

one of a set of N distinct states, SI, S2 ,. .. , SN. The system experiences a change of state (possibly

back to the same state) at evenly spaced discrete times t = tI, t 2 ,..., t,. The active state at time t. is

denoted as qg,. The next state, qt.,, is determined by the state transition probabilities associated with

the current state, qt,. The state transition probabilities, aij, are written as

aj = P (qt.+ = Sjlqt. = S.) , 1 < ij < N. (2.35)

Where N is the number of states, S, is the current state, and Sj is the next state. The state transition

coefficients must satisfy standard stochastic constraints so that

0 < aj < 1 (2.36)
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02 0.3

03:

0 1.4 0

Figure 2.1. Three State Markov Chain to Model the Weather

N

ja= = 1. (2.37)
ji=1

Each state in the above process corresponds to an observable, physical event. Rabiner clarifies

the concepts of the Markov chain by illustrating a simple 3-state model of the weather which is depicted

in Figure 2.1 (22). The weather is observed at the same time each day as one of the following:

State 1: rainy or (snowy)

State 2: cloudy

State 3: sunny.
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The state transition probabilities for times t,, - tj are compactly represented by the A matrix as

follows rall a12  a13
A = (aj) = a2 l a22  a23  • (2.38)

a 31  a 3 2 a 3 3

The initial state probabilities at time tj are similarly represented with the following notation

7ri = P(qt, =$S), 1<i<N (2.39)

and are also represented in matrix format using the column matrix wr as follows:

" = (Or) = (r2 (2.40)

Ir3

Now consider the following weather observations over a 5 day period, "rainy - sunny - cloudy - sunny

- rainy". More formally the observation sequence 0 is stated as 0 = {IS, S3, S2, S3, S1 }. The state

transitions are independent by the Markov property (22), so the probability of 0 given the model is

expressed as

P(OlModel) = P(SI, S3 , 2 ,SSAilModel) (2.41)

= P(S•) P(S3ISA). P(S2IS3) P(S3,S 2) P(S1 IS3) (2.42)

= 7r, , a 13 " ,a 32 " a23 " a31  (2.43)

Before extending these ideas to HMM's, it is important to understand that the states of the

Markov chain are explicitly specified by the observed weather. That is to say that if the weather is

observed as sunny, the model is in state 3 (S 3). Therefore, the Markov chain is completely visible from
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the observed sequence. As will be described in the next section, the states of a HMM are not specified

by the observed sequence - they are hidden.

2.4.3 Extension to HMMs Rabiner introduces the concepts of HMM's using several biased

coin toss experiments and the classic urn and ball experiment (21) (22). Instead of summarizing

those experiments here, an experiment using weighted die will be demonstrated to provide a broader

understanding of basic HMM concepts, when combined with Rabiner's examples.

Consider a system which produces an integer number between I and 6 at evenly spaced time

increments. A typical observed sequence might be

0 = 0j, , 0 t3 - 0L7

= 341...2.

Given, the above set of observations, the problem of interest is to build a HMM to explain the observed

sequence of integers (22). Obviously, there are numerous mechanisms which could account for the

above observations. One of which is a single, fair die, but for this example, let the system be comprised

of 3 biased die which are hidden from the observer by a barrier. Each die is biased as follows:

Die 1 Die 2 Die 3

P1 (1) = 0.3 P 2 (1) = 0.05 P3 (1) = 0.7

P, (2) = 0.15 P2 (2) = 0.1 P3 (2) = 0.025

P,(3) = 0.15 P2 (3) = 0.6 P3 (3) = 0.1

P1 (4) = 0.1 P 2 (4) = 0.05 P3 (4) = 0.05

P, (5) = 0.2 P 2 (5) = 0.1 P3 (5) = 0.025

P/1 (6) = 0.1 P2 (6) = 0.1 A3 (6) = 0.1

The above weights were chosen arbitrarily, but the combination of weights for each die must sum to 1.

According to some random process, an initial die is chosen and rolled. The outcome of the roll is

recorded as the first observation at time t,. A new die is then chosen (possibly the same die) according

to the random process selection associated with the current die. At the next time increment, t2 , the new
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die is rolled and its output is recorded as the second observation. A new dice is chosen based on the

current die and the process is repeated.

In a straight forward way the system can be modeled with a three state (N = 3) HMM, one for

each die. The initial state (the die chosen at tj) and the state transitions (the new die chosen based

on the current die) can be represented as the 7r (2.40) and A (2.38) matrices introduced for Markov

chains in the previous section. For this example let

(0.4

7r = (ON) = 0.3 (2.44)

0.3

and

(0.3 0.5 0.2
A = (a1j) = 0.6 0.2 0.2 • (2.45)

0.1 0.2 0.7

Clearly, the structure of the HMM is similar to that of the Markov chain. The primary difference between

the two is that the observation outputs do not uniquely correspond to any given state. Therefore, to

fully describe a HMM the observation probabilities must be specified for each state. The following

notation is used

bi(m) = P(v,,att.lqt =S,), 1<i<N I <m<M (2.46)

Where vm is the mth element of the output symbol set, V = {vI, v2,. • , vm }, and M is the number

of symbols in the output symbol set. For the current example, M = 6, v, = 1, v2 = 2, -- -, and

va = 6. As with A and ir the bi(m)'s are also written as elements of a B matrix. The probabilistic

weights of the dice are expressed in the B matrix as

0.3 0.15 0.15 0.1 0.2 0.1

B = (b,(m)) - 0.05 0.1 0.6 0.05 0.1 0.1 (2.47)

0.7 0.025 0.1 0.05 0.025 0.1
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The HMM is completely specified by N, M, A, B, and 7r and for convenience the compact notation

A = (A, B, r) (2.48)

is used.

The model, A, is generally used to describe an observed sequence but, it can also be used to

generate an observation sequence 0 that has T observations as follows (22):

1. Choose an initial state qj, = Si according to the initial state distribution ir.

2. Sett = tl.

3. Choose Or, = v,, according to the symbol probability distribution in state Si.

4. Transition to a new state state qt+, -- j according to the state transition probability distribution

for state Si.

5. Set t = tn+I; return to step (3) if t < tT; otherwise, terminate the procedure.

This procedure was used to generate 3 observation sequences, 0 k, with T = 10 observations

each. The superscript k denotes the sequence number. The 3 observation sequences are

0 1  = 5 3 1 3 4 3 3 5 5 1

02= 2 3 2 3 3 4 6 1 5 6

03= 3 3 6 3 2 5 1 1 1 1.

From the perspective of the observer, who can only see the observation sequences, the state of the

model at t = t, as well as the weights of the individual dice are not readily apparent.

2.4.4 HMMDesign As previously mentioned there are three fundamental problems for HMM

design. These problem are given below using the notation presented in the previous sections (21) (22).

1. Given the observation sequence O = Ot, Ot2 .. OT, and a model A = (A, B, w). how can

P(O JA), the probability of the observation sequence, given the model, be calculated efficiently?
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2. Given the observation sequence O = O0,, O2 "" Ot,,andamodelA,howcanacorresponding

state sequence Q = qt, qt,, "' qi, be chosen, which is optimal in some meaningful sense (i.e.,

best "explains" the observations)?

3. How can the model parameters, A = (A, B, i'), be chosen to maximize PkO I.A)?

2.4.5 Observation Probability Given the Model The probability of an observation sequence

0, given the model A (P(OIA)) is a measure of how well a given model matches an observation

sequence. Therefore, P(OIA), is a way of choosing the best model among several competing models

(21) (22). For isolated word recognition (IWR), a HMM is synthesized for each word to be identified.

The identification of an utterance of an unknown word is accomplished by choosing the word whose

HMM has the highest P(0IA).

P(0IA) is computed in a straight forward way by taking the sum of the joint probabilities

of every state sequence Q1 = qj, q%, "'" qt, (21) and the observation sequence 0 of interest.

P(O, Q'IA) can be computed as the product of P(OIQ', A) and P(Q'IA). It follows that

P(O, Q'I,) = P(OIQ', •). P(Q1I,). (2.49)

The second term on the right side of (2.49) is calculated exactly the same way as P(OIModel) in

Equation (2.41) for the Markov chain such that

P(QWIA) = 7rq,, a,,qq 1,aq• 2qt3a'''qtT, 91q. (2.50)

The calculation of P(0OQ', A) is also straight forward.

P(OIQ',A) = bq,1 (Og)bq,2 ( 0 t) ... bqT(Ott). (2.51)

Finally, P(O IA) is obtained by summing P(O, Q IA) over all possible state sequences:

P(OA) = _ P(OIQ1,A). P(Q1IA). (2.52)
all i
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Although the calculation of P(O IA) directly using (2.52) is straight forward, it is computationally

unfeasible even for small values of N and T, since there are (2T- 1) multiplications per state sequence,

NT possible state sequences, and NT - 1 additions (21). For N = 5 and T = 100, there are on

the order of 2. 100. 510 W -; 1072 computations required. However, the forward-backward procedure,

which is discussed below, offers an efficient way of calculating P(OIA).

2.4.6 Forward-Backward Procedure Both the forward calculation and backward calculation

of the forward-backward procedure avoid the computational problems of (2.52) by using an inductive

approach which averts the need for calculating P(O, Q1IA) for all N' possible state sequences.

Derivation of the forward and backward algorithms are given is Appendix A.

2.4.6.1 Forward Algorithm The forward variable is defined as

a,. (i) = P ( 0,, .-. 0O., qt. = SiIX) (2.53)

or the joint probability of the partial observation sequence O0, O,, ..- 0j. and being in state Si at time

t,,, given the model A (21) (22). at. (i) is evaluated inductively as follows:

1. Initialization:

ag1(i) = bi(Ot,)7ri, 1 < i < N (2.54)

2. Induction: Given ag, (i) for 1 < i _< N calculate at.,, (j) by induction:

N

S= b, (O.+,) Zaijat(i), 1 < i < N (2.55)
1=1

S<n <T- 1

An illustration of the steps required to compute the forward variable at., (j) is shown in Figure

2.2.

3. Termination: In final step, the desired probability, P(OIX), is computed.

N

P(O1') = W (2.56)
2i=1
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Figure 2.2. Calculation of the Forward Variable )at
1 (i)

By (2.54), the number of computations required to compute the a's atit, is N multiplications, and
referring to Figure 2.2 and (2.55), each a• for it, > t1 requires N + 1 multiplications and N additions
for a total of N × T - 1 a•'s. With the N additions in the termination step, the number of computation
required to compute P(OIA), is N+ (N + 1) (N) (T - 1) multiplications and N (N) (T - 1)+ N
additions. Thus, the number of computations required is on the order of N2T (about 3000 for N = 5
and T = 100) rather than the 2TNT required by the direct calculation (21).

2.4.6.2 Backward Algorithm The backward algorithm also offers an efficient way of
computing P(O IA). The derivation of the backward algorithm is also found in Appendix A. The

backward variable •th, (i) is defined as

Ik,.(i) = P (O.+ 1 O,.+2 • • •Ot1.Iqt. = S-,, A). (2.57)

Hence, /,it.() is the probability of observing the partial observation sequence Ot.+IOr.2 ""O

given state S. and time i,. and the model AX (21) (22). Again (Ig. (i) is calculated inductively as follows:
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Figure 2.3. Calculation of the Backward Variable fPt. (i)

1. Initialization: 6tT(i) is initialized to 1 for all i to maintain the desired probability. 0 is not

explicitly defined for t, > tT, so the following probability is arbitrarily set to 1 (22).

fiT(i) = P(O,,.'O,,jq,=SA) = 1, 1<i<N (2.58)

2. Induction: Compute 3t. inductively using i+., (i).

/3,., (i) = 1 aijbi (O,.,+) fit .+, (j), T - 1 > n > (2.59)

1 <i < N.

The backward calculation is illustrated in Figure 2.3.

3. Termination: The desired probability is computed as

N

P (O, ...- OtIA) = 7ribi (O,) ft, (i) (2.60)
i=1
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The number of calculations required for the backward algorithm is approximately the same as

the forward algorithm, so the forward algorithm holds no clear advantage over the backward algorithm.

However, both are required for the solution of Problem 3.

2.4.7 Best State Sequence Given the Observation and the Model While Problem I has an exact

solution, there are several possible solutions to Problem 2 which depend on the optimality criterion for

the best state sequence Q given the observation sequence 0 and the model A. One such optimality

criterion is to choose the states qt. which are individually most likely at time t, (22). The solution for

this criteria is accomplished via the following variable which is defined as

-t.(i) = P(qt. = Si1O,AX) (2.61)

or the probability of being in state Si at time ti, given the observation sequence 0 and the model A.

Yt. (i) can be written in term of at. (i) and Pi. (i) as shown by the derivation in Appendix A. -ft. (i)

is expressed in terms of at. (i) andfit. (i) as

""t() - P(OI)W (2.62)
P(0OIA)

The individually most likely state qt. at time t,, is solved in terms of m't. (i) as

qt. argmax [-t.(i), < n < T. (2.63)

Equation (2.63) maximizes the expected number of correct states, but the resulting state sequence

may not be valid. For example, using (2.63) it is possible to choose qt. = S3 and qt.÷1 = S2 to be

the most likely states at t, and t,+1 even though a32 may be 0. Because the optimal state sequence

defined by (2.63) may not be a valid sequence, it is not used for most applications (22). The most

widely used optimality criterion is one which finds the single best state sequence (i.e. the sequence

with the highest probability, given the observation and the model) so that P(Q 10 , A ) is maximized

(22). Maximizing P(Q I0, A) also maximizes P(QO CX). The Viterbi algorithm provides an

efficient technique for finding the single best state sequence.
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2.4.8 Viterbi Algorithm Using the Viterbi algorithm, the single best state sequence is found

via the quantity

.,(j) = max [P (qt qt,2  qt.,q,,+, --= S,. , OtO ... O,.+, A)] (2.64)
991 q192 * * " qt-.

Where 6 t.+, (j) is the probability of the best (or most likely) state sequence qtI qg92 "' qt. which also

passes through S at t.+, (or qt.+, = 5,) for the observation sequence, Ot, ..- Ot.+,, given A.

Solving for 6t.+, (j) directly will eventually incur the same computational difficulties as calculating

P(O JA ) directly because there are Nt - possible state sequences to test. However, if 6t.+, (j) is

evaluated recursively in terms of 6bt (i) for 1 < i < N, the probability of only N possible state

sequences need to be scored because bt. (i), by definition, is the probability of the most likely state

sequence prior to t,. which passes through Si for 1 < i < N. The recursive relationship between

6t.+• (j) and 6t. (i) leads to the following expression,

=t.+( W max [6t.(i)aijlbj (Ot.+j (2.65)
i

The actual state sequence is tracked by recording the argument, 1 < i < N, (which is actually

the previous state) that maximizes (2.65). This value is denoted as the variable bt.+, (j). The procedure

is summarized below (22):

1. Initialization: The initialization step at t1 does not require a scoring of the previous state sequence

because the states prior to ti are not defined. Therefore, b I(i) = P (qg1 = Si, Ot IA) only

depends on 7r, B , and Ot,. ibj (i) is not defined and is arbitrarily set to 0. The initialization

step is as follows:

t,()= -ribi (Ot,) 1 <i < N (2.66)
Ot,(i) = 0 1 < i < N
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2. Induction: With initialization at t, complete, the recursive part of the Viterbi algorithm can

proceed.

6t ,. 1 (j) = max [b,. (i) ai] bi (Ot.), 2 < n < T, 1 <_ j _ N (2.67)

g,•+1(j) = argmax [6t.(i)aij] , 2 <n <T, 1 < j < N (2.68)
i_<i<N

3. Termination: Once the probabilities of the best state sequences up to tT-1 have been determined

the probability of the final best state sequence, denoted P*, is simply the maximum 6 tT (j) for

1 < j _< N and the last state of the sequence is the argument of the maximum 6,,(j). Hence,

P -= max [6t,(i)] (2.69)

I<i<N

q = argmax [6t,(i)]. (2.70)
lgi<N

(2.71)

4. State sequence retrieval: The most likely state sequence, Q *, is found by backtracking through

the Ob's in the following way:

qt. = bt.+ (qt+.) n = T- 1,T- -2,..- 1 (2.72)

2.4.9 HMM Synthesis through Training The third problem which is to adjust the parameters of

the HMM model A to maximize the probability of the observation sequence given the model does not

have an analytical solution (21) (22). The Baum-Welch iterative estimation procedure does, however,

provide a method which adjusts the model parameters so that P(O IA ) is locally maximized. This

procedure is presented below.
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2.4.10 Baum-Welch Reestimation Procedure The Baum-Welch reestimation procedure uses

two quantities. The first quantity, rt. (i), has been previously introduced and is defined in (2.61) and

is the probability of being in Si at t,,, given 0 and A. The second quantity, &. (i, j), is defined as the

probability of being in Si at t. and Sj at t.+,, given 0 and A such that (21) (22)

6. (i,j) = P (qt. = Si, qt.,+ = SjIO ,A) (2.73)

t (i, j) is also be expressed in terms of the forward and backward variables (a and /) as shown in

Appendix A. &. (i,j) in terms of ci and / is

,.(i,j) A at.(i)aPjb,(O 1 ) 1 <i<N, 1<j<N (2.74)

The definitions of •,.(i,j) and 7 t.(i) are very similar. In fact, summing &,(i,j) over all j

yields the probability of all transitions from Si at t,, or equivalently the probability of being in S at t,,

(21) (22). Therefore,

N
"(i) = (i,j) (2.75)

j=1

Another quantity of interest is a value which is proportional to the expected number of times that Si is

visited over the length of the observation sequence. This quantity is found by summing ft. (i) over all

time t _< t. _< tr (22). Furthermore, if t T is excluded from the summation, this quantity can then be

interpreted as being proportional to the expected number of transitions from Si during the observation

sequence. Similarly, a quantity proportional to the expected number of transitions from Si to Sj is the

summation &. (i,j) for 1 _< t. _< tr .

The Baum-Welch reestimation procedure is based upon the expected value of event occurrences

or, in other words, the concept of counting event occurrences. The quantities described above, which

are actually probability measures, provide a way to reestimate the HMM probability parameters.

Accordingly, the Baum-Welch reestimation procedure is (21 X22):

1. Update the estimates of the initial state probabilities, wr, to the probability proportional the

expected number of times in S, at tl. The stochastic constraint, F=1 Y = 1, is satisfied by
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normalizing W, by the probability which is proportional to the expected number of times in all

states at tj. -ft, (i) satisfies this relationship so that T, is estimated as

i yt(i) (2.76)
at, (O)pt, Wi (2.77)

for1 <i < N.

2. Update the estimates of the state transition probabilities, aq, to the probability proportional to

the expected number of transitions from Si to ,j for ti _< t, _< tT-.. The stochastic constraint,

EN dij = 1, is satisfied in this case by normalizing aij by the probability which is proportional

to the expected total number of transitions from Si.

, E.=, &,. (i, j)
n=1 (2.78)T-I

at. (i)aijbi (O.,+,) •.+, W (2.79)

for 1< i < Nandl <j < N.

3. Update the estimates of the state symbol probabilities, bi(m), to the probability proportional

to the expected number of times in Si and observing Ot. = Vm for t1 _< t,. 5 tT. bi(m) is

normalized by dividing by the probability which proportional to the expected total number of

times in Si.

ET= at. (j)'O,. (j)
only(if 0.O = OU

bm =(2.80)ET= at. (i)'O,. (i)

forl <i < Nandl _< m_< M.

2.4.11 Properties of the Baum-Welch Reestimation Procedure Baum has proven that the rees-

timated model, T = (A, V, W-) as defined by Equations (2.76) - (2.80), is either at a critical point,

in which case Y = A, or T is more likely than A in the sense that P(O IX-) > P(O iA ) (7). Hence,

the Baum-Welch algorithm insures that P(O IX-) -2 P(O IA ). By iteratively using A in place of

A, the probability of 0 given the model is improved until the critical point is reached. The Baum-
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Welch reestimation procedure leads to a local maximum only. For most problems, the optimization

surface is very complex and has many local maxima (21) (22). Consequently, the critical point when

P(O IT) = P(O IX ), where A represents the model at the end of the previous training loop, may

not be the best possible model and is dependent on the starting point of the model before training (22).

Methods for choosing the starting model are discussed in detail in references (11), (21), and (22).

2.4.12 Left-Right HMM Implementation For IWR a left-right HMM is usually implemented

because the temporal relationship between phonemes is inherently modeled by the state transitions of

the HMM (21) (22). A left-right HMM, which is shown in Figure 2.4, is a HMM which does not allow

state transitions to a lesser state. Also, the initial state is always S1 . The initial state matrix 7r and the

state transition matrix A for a 5 state left-right HMM are

1.0 1

0.0

IF = 0.0 (2.81)

0.0

0.0

and

all a 1 2 a 1 3 a 14 a15

0.0 a 2 2 a 2 3 a 2 4 a 2 5

A = 0.0 0.0 a 33  a3 4 a 35 (2.82)

0.0 0.0 0.0 a44 a45

0.0 0.0 0.0 0.0 as

Before implementing a left-right HMM, two problems must be resolved. The first problem is

not unique to left-right HMM's and is directly related to the dynamic range of the computer used to

implement the HMM's. To illustrate this problem, consider the forward calculation of at. (i) defined

by Equation (2.53). It can be shown the ct. (i) is calculated as the product of a large number of terms
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allI a22 a3 a"4 a55

Figure 2.4. 5 State Left-Right HMM

that are significantly less than 1. Each calculation has the form (22)

aq,.,,.+, IIbq,. (Ot.).

The at. (i)'s exponentially approach zero as t,, increases. For t. greater than 10, the computation of

at. (i) may exceed the dynamic range of the computer and for larger values of t,,, at. (i) most certainly

will underflow any computer. To avoid the underflow problem, both the at. (i)'s and theft. (i)'s are

calculated using a scaling procedure (22). Using the same reasoning it can be shown that the Viterbi

algorithm will also underflow the computer for approximately the same values of t,,. However, the

underflow problem with the Viterbi algorithm can be effectively avoided using logarithms (22).

Secondly, the left-right HMM cannot effectively use a single observation sequence to train

because the transient nature of the states within the model only allow a small number of observations

for any state for a given observation sequence. Therefore, in order to have sufficient data for reliable

estimates, multiple observation sequences must be used to train the models (22). Consequently,

Equations (2.78) and (2.80) must be modified to account for multiple observations. The initial state

matrix, ir, is not changed because the model always starts in SI. The forward-backward variable

scaling, Viterbi algorithm with logarithms and multiple observation sequence training procedure are

discussed below.

2.4.12.1 Forward-Backward Variable Scaling The goal of the scaling procedure is to

keep the as. (i) and Pt. (i) coefficients within the dynamic range of the computer. The basic procedure
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is to multiply at. (i) by a scaling factor, ct., which depends only on t. and is independent of i. With

the scaling factor incorporated the forward calculation is

1. Initialization:

at,(i) = bi(O.)wjr, 1 < i < N (2.83)

The scaling coefficient is calculated for tj as

1
C - a 1 (i) (2.84)

and et, (i) (at, (i) after scaling) is

g,,(i) = ctat,(i), 1 < i < N. (2.85)

2. Induction: Given at.(i) for 1 <i <N calculate Ft.+t (j) by induction:

N

&t.+,(j) = bj (Or., Zaiia,.(i), 1 < j < N (2.86)

The scaling coefficient for t.+, is calculated as

1

c1+1= (2.87)

and finally, Ft.+, (j) is

a. 1 (j) W c 1.+,&t.+,(j) 1 W I < Nj _< N. (2.88)

This procedure is repeated recursively for tj _< t, 5 t•- .

3. Termination: P(O JA ) cannot be calculated using 6qT (j) directly because the stochastic prop-

erties of the forward variable calculations have been corrupted by scaling. However, by induction
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it can be shown that at. (i), atý (i), and ct. are related as follows (22).

&t.., (j) = c)a4., (j) = C,.+, a 1t.+ (j) (2.89)

where Ct.+,= c.. Hence, P(O JA ) can be calculated in terms of CST. This is shown

by writing CtT as

1
CST -• EY=,: (N_) '""v I...) = aija, -_, (i)

1cT_ I•= bj (ot,_) =,.J,,()

1 (2.90)

It follows directly from (2.90) that

N

CSTEatc(j) = 1
j=1

and that

P(O IA) 9 T 1 (2.91)

C~t-T H t C8

If scaling is required, P(O JA ) is also likely to be out of the dynamic range of the computer, so

the log of P(O IA ) is normally computed such that

9T

log [P(O IA)] = - E log [C.) (2.92)
8=t1

The fi. (i) coefficients are scaled by the same scaling factors for each time t. as was used to

scale the at. (i). The backward recursive procedure is now

1. Initialization: /hT (i) is initialized to CiT for all i.

#11T() = CST, 1_<•i_<N (2.93)
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2. Induction: Compute A. inductively using ,.÷, (i).

I3 (i = c .E== ajb,(O t .),)j,+(j), t-_ t. >_ (2.94)

I<i<N.

3. Termination: P(O 1A ) cannot be computed after this scaling procedure because in this case the

scaling coefficients are not explicitly related to the unscaled fkt. (i) coefficients. However, the

goal of this scaling procedure is to keep ti.. ,.h• (i) coefficients within the dynamic range of the

computer so they can be effectively used for the Baum-Welch reestimation procedure.

2.4.12.2 Viterbi Algorithm with Logarithms For the Viterbi algorithm the underflow

problem is solved without scaling by using logarithm addition in place of the multiplications in

Equations (2.66) and (2.67). Thus, the Viterbi algorithm using logarithms is implemented as shown

below.

1. Initialization:

log (6t, (i)) = log (7r,) + log (b, (0g)) 1 < i < N (2.95)
,•,() = 0 1< i< N

2. Induction:

log (,..+, (j)) = max [log (bt,(i)) +log (aij)] +log (bj (O..+J)), (2.96)

Ot/.., (j) = argmax [log (b,. (i)) + log (aj)] , (2.97)

for t2 _5 t. _< ti and 1 < j _< N.
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3. Termination:

log (P*) = max [log (6jT(i))] (2.98)

q;T = argmax [log (6gT (i))]. (2.99)

4. State sequence retrieval:

qt = . (q,.+.,) n = T- 1,T- 2,.-. 1 (2.100)

2.4.12.3 Training with Multiple Observation Sequences and Scaled Forward-Backward

Variables Recall that the Baum-Welch reestimation procedure maximizes P(O kIA ) where the 0 k

denotes the kth observation sequence. Note, that for the reestimation Equations (2.78) and (2.80), a

single observation sequence is implied. For multiple observation sequences, the goal is to estimate the

model parameters to maximize P(O IA ) for the entire set of K observation sequences denoted as

O = ( 1 0 2  ... Ok ... OK) (2.101)

where the kth observation sequence is

0" = ( o0 ... OT). (2.102)

Assuming that the observation sequences are independent,

K

P(O ) = i P(O I). (2.103)
k=1
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However, the log of P(O I ) is normally computed because even for small values of K and T it is

likely to be out of the dynamic range of the computer. Thus,

K

log [P(O 1_)] = log [P(O 'II)] (2.104)
k=I

For the remainder of this discussion, let P(O k I,) pl.

As shown in Section 2.4.10, the estimate of the state transition probability, ijj, is a probability

proportional to the expected number of transitions from Si to Sj for t1  4, <• tr-I normalized by the

probability proportional to the expected total number transitions from Si. For multiple obser\ ations,

Uj is a probability proportional to the sum total of the expected number of transitions from Si to

Sj for tj :_ t- <- tT-1 over the entire set of K observation sequences normalized by the probability

proportional to the expected total number transitions irom S over the K observation sequences. Hence,

the modified reestimation formula for Nj is

E ,=I T1  k (ij)

Nij k= n It
EK "ET-I -y (j)ab(0,+)•+()

KK 1 ,T-1 o
-r =l a-t. (,=,b o t•.(i1k,()

for 1 < i < N and 1 < j _< N. Similarly, the modified reestimation formula for br(m) is

EK IE I ,. (i)

•i~k= n= ,.; = n

F-K= I I...T I k (i)#k (i)
k=--T .n=10. , .

¢niyfO•,• = I.
= I I- E T (2.106)

for 1 < i < N and 1 <rm < M.

Each observation sequence, k, has its own set of a'. (i) and 0'. (i) coefficients as denoted by

the superscript k in Equations (2.105) and (2.106). The 1 /Pk factor in Equations (2.105) and (2.106)

is present because it is part of the definitions of 7y' (i) and ýk (i, j) and does not cancel because those

quantities are summed over k in the numerator and denominator. P(O IA ) cancels in Equations (2.78)
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and (2.80). If the a' (i) and 6' (i) coefficients have been scaled, according to Rabiner the reestimation

equations become

"aj = h-, =r t .(i)a--b, (i') PC. ] (2.107)

for 1 < i < N and 1_< j < N and

k=1 pT lt('#

"b,(m) = o K..- (2.108)

for 1 < i < N and 1 <m < M. The 1/c k factor in the denominator of Equation (2.107) is required

because that scaling coefficient is absent from the numerator. The relationship between &k (i), a k (i),

and Ctk is given by Equation (2.89) and a similar relationship also holds between the scaled and

unscaled /3. (i) coefficients. Thus,

t. (i)aijbj (O•o+) t. (j) C( ) at.(i)aijbj (o.,+,) (fi () i )+,(

= Ctk k Ta,(i)ahjbj (o+I)flh.+ 1(i) (2.109)

Therefore, the effect of the scaling coefficients can clearly be seen if Equations (2.107) and (2.108) am

written as

SE, .. c (i)ab, (ok,) p+, (j)

Ujj = - - - -- (2.110)

for 1 < i < N and 1 < j < N and

Cl p C k a= k (i)ptk. (i)

b,(m) = **if (2.111)
r•= K ,'T k k ()3.i

pk= P1. n= cf. at,.

According to Rabiner, dividing by Pk removes the scaling factor from each term before summing over

k because of the fact that Pk = 1/Ck (22). However, Rabiner does not address how Equations (2.107)
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and (2.108) would be implemented if pk is out the dynamic range of the computer - the primary reason

for scaling in the first place. These issues are addressed in Section 3.5.1.

2.5 Classification Performance Clarification

In Chapter IV, estimates of the classification error performance will be reported for the various

classifiers at SNR's of 20 dB, 15 dB, 10 dB, 5 dB, 0 dB, and -5 dB. To present these estimates in some

meaningful way, the SNR will be related to range and the accuracy of the estimates will be specified.

Hence, the purpose of this section is to clarify the results of the classification experiments to follow.

2.5.1 Relating SNR to Range The SNR can easily be changed in computer simulations but, it

may not be the most useful quantity for expressing the overall performance of the RTI algorithm under

test. Certainly from the pilot's perspective, a more useful quantity is the range to the target, which is

inversely proportional to the SNR. Actually, the SNR for a particular range is dependent on a number

of variables. One such variable is the radar cross section (RCS) of the target. However, the RCS is a

volatile quantity which is very dependent on aspect angle; changing by as much as 30 dB for just 0.20

change in aspect angle (4). Obviously, the SNR for a given range is also dependent on the radar system

parameters. In this section, the radar range equation (RRE) will be used to compute the range given

the SNR (26).

A hypothetical HRR linear FM pulse compression radar, whose transmitted signal is same as

described in Sections 2.2.2 and 3.2.3, and a hypothetical target will be used. The RRE for this

hypothetical radar and target is

4= PoGAao (2.112)

(4ir)2kToFj(Bf ..T)fpSNR

where R range from the radar to the target, m

Pa,, average transmitted power = 34 w

G antenna gain = 10, 000

A antenna effective aperture = 1.5 m2

a7 -- RCS of target = 2 m2

k Boltzmann's constant = 1.38 x 10-23 J/deg

2-35



T - standard temperature = 290 K

F - system noise figure = 2

Bfm receiver bandwidth = 750 MHz

T pulse width = 170.67 ns

f1, pulse repetition frequency = 1000 Hz

SNR Signal to noise ratio

Although, the parameters of the radar are carefully chosen so that reasonable ranges for a given SNR

can be realized, no attempt is made to insure that the radar can be made with todays technology. For

example, an average power of 34 w for a pulse width of 170.67 ns and a pulse repetition frequency of

1000 Hz, requires a peak power of 200 kw. At the very least, it would be difficult to fit an aircraft with

a transmitter this powerful. To field a system with an antenna gain of 10,000 and system noise figure

of 2 is equally as difficult. To further complicate the issue, the RCS of the target fluctuates wildly so

that the range for given the SNR will also fluctuate. With all that, the range for a given SNR is given

in Table 2.1.

Table 2.1. Range versus SNR

BSNR 11 20 dB 1 15 dB I10 dB 5 5dB 1 0 dB --5dB
Range 15.8km 21.1km 28.2km 37.6km 50.1 km 79.5km

2.5.2 Determining Error Performance Confidence Intervals The classification results pre-

sented in Chapter IV are based on a finite data set and are, therefore, only point estimates of the actual

classification rate, E (24). Let the estimate of E be defined as

L
P

L Number of misclassified test vectors

P Number of test vectors

Assuming that E is a binomial random variable, the Classifier Confidence Interval is related to the

variance of E and E is the mean of E (24). By expressing the distribution of k as the Gaussian
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approximation to the binomial distribution, the variance of 8 is approximated by P(1 - E)/P. It can

be shown that

Prob{8 - za{k}< E < z&- ;: (2.113)

a((}- (2.114)

where z and 7 are parameters of the standard Gaussian distribution of E.

Thus, the actual classification rate is within the confidence interval, E - z&{8} < E >

E - za{E}, with a confidence level or probability of y. For example, if z = 1.96 the confidence

level is 95% (y = 0.95).

2.6 Summary

In this chapter, the background material for a linear FM pulse compression HRR radar, the Prony

model, and HMM's has been presented. These three disciplines comprise the major components of the

the RTI algorithms developed for this thesis. Also, the SNR was related to the range from the radar to

the target and the accuracy of the classification rate estimates was defined to clarify the classification

performance reported in Chapter IV. In the next chapter, the RTI algorithm will be described by drawing

upon the background material presented here.
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111. RTI ALGORITHM DESCRIPTION

3.1 Introduction

The purpose of this chapter is to describe the RTI algorithms developed for this research effort.

The background material presented in Chapter II forms the basis for three major sub-processes of the

basic RTI algorithm. These three major sub-processes are the front-end signal processing process,

the feature extraction process, and the classification process. The system block diagram is shown in

Figure 3.1. What follows will be a detailed description of each element within the block diagram.

3.2 Front-end Signal Processing

The purpose of the front-end signal processing is to condition the non-causal, noiseless Xpatch

HRR radar signatures so that they emulate causal, and therefore physically realizable, circularly

polarized, HRR Linear FM, noise corrupted radar signatures. This process is described below.

3.2.1 HRR Radar Signature Synthesis To reduce the data storage requirements, the raw Xpatch

output contains only the positive (one-sided) spectrum of the band limited impulse response of the target.

Thus, in software, Xpatch illuminates the target with a complex signal, which has a flat spectrum over

the entire bandwidth of approximately 1.5 GHz. In the discrete time domain, where n is related to

range r, by Equation (2.6), the incident signal for a single linear polarization is

x = •in(2irET.n2  ,rfT.n n= 0,1,2,... 1023 (3.1)

7rn
f 10.0GHz

1
B ;z:: A 1.5GHz.

It should be noted that Ta is not an even multiple of f.. As a result, the discrete spectrum of x[n], which

is periodic in multiples of 27r, is not centered around f,. Although it is not certain how Xpatch resolves

this issue, the discrete spl> n of x[n] can easily be centered by circularly shifting the spectrum to

the right about 250 MHz or 170 discrete frequency points. Thus, the incident signal in the discrete

frequency domain is the shifted DFT of x[n] or

X[k] = 1, k = 0,1,2,.-.1023 (3.2)
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3.2.2 Frequency Decimation and Linear to Circular Polarization Transformation As stated

in Section 3.2.1, the range extent of the range profiles is 102.4 meters. However, the targets of interest

are fighter class aircraft which are less than 25 meters long. Therefore, the output from Xpatch is

decimated, keeping one of four frequency samples, to increase Af by a factor of 4, thus reducing

the range extent to 25.6 meters. Also, without any loss of information the four decimated linearly

polarized Xpatch range profiles are transformed into two left circularly polarized range profiles by

the transform given by Equation (2.11). Hence, the fully polarized range profiles are represented by

vertical receive/left circular incident, (X.g[k]), and horizontal receive/left circular incident, (Xhulck),

range profiles where 0 < k < 255.

3.2.3 Linear FM Pulse Compression At this point the range profile is essentially the impulse

response of target over the finite bandwidth B and is free of any noise. A realistic response of the target

is achieved by filtering the range profile by the 'chirped' HRR radar transfer function described in

Section 2.2.2, adding white Gaussian noise, and then filtering with a transfer function that is matched to

the original 'chirped' HRR radar transfer function. This transfer function is given by Equation (2.10).

To correspond to the Xpatch output, the complex form of this equation in the discrete time domain is

given here.

f[n]= ei(2f.[-Tf1+f [.Tdn rect ( , (3.3)

n = 0,1,2,...255

10.0 GHz: carrier frequency
1

T. 1.5 GHz: sampling frequency

Bi, - 750 MHz: bandwidth

T 170.67 ns or 25.6 m: pulse width

Bj,.T = 128: pulse compression ratio

Again the spectrum of f[n], F[k], will not be centered in the periodic spectral window, so F[k] is

circularly shifted to center the spectrum as illustrated in Figure 3.2. In the discrete frequency domain,

the circularly polarized Xpatch signatures, X.1[k] and Xhd[k], are multiplied by F[k]. After X.I[k]

and XhA[k] are corrupted by AWGN, as describe below, they are both match filtered by F*[k].
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Figure 3.2. Magnitude Response of F[k]

3.2.4 Noise Corruption As stated in Chapter I, it is assumed that the target is in free space

away from any clutter or other noise sources. Therefore, the primary sources of noise are assumed to

be thermal noise received by the radar antenna and thermal noise in the receiver which is adequately

modeled as AWGN (9). X.I[k] and Xh1[k] are transformed to the discrete time domain with an

IFFT routine, corrupted by complex (complex because the signals are complex) AWGN, and then

transformed back to the discrete frequency domain using a FFT routine. XVI [k] and Xhg[k] are

corrupted by independent noise realizations because it is assumed that they are processed by a two

channel receiver. To set the notation, the outputs of the matched filters, which now emulate noisy

circularly polarized Linear FM HRR radar signatures, are S4[k] and Shd[k].

3.3 Feature Extraction via the Prony Model

The scattering centers of the target are modeled using the Prony algorithm discussed in Section

2.3. Referring to Figure 3.2, the frequency samples outside bandwidth of F(k] are essentially zero and

the data set is further reduced to the frequency samples within the bandwidth of F[k]. The definition
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for the Prony Model of fully polarized range profiles is restated here as

Slk ah,.
Pik., k -- 0, 1, 2,..., N - 1 (3.4)S .I[k ] n= 1 a t

where

pt,. pole of the nth scattering center

ab. -- amplitude coefficient of the horizontally received nth scattering center

avt, - amplitude coefficient of the vertically received nth scattering center

T number of scattering centers

N number of discrete frequencies.

Recall that the frequency responses of the scattering centers are represented by the Prony model,

therefore N, the number of discrete frequencies, is limited to the 116 samples (: 680 MHz) in the

center of F[kJ where the frequency response is relatively flat. Each range profile is modeled using the T

scattering centers with the most energy. Each scattering center along the range profile is characterized

by 5 features as described in section 2.3.1. In matrix form each range profile is written as

(I Pt, I ARt, r~t, JEj, rt,

range profile = j I ARt, rt 2  Et 2  r 2  (3.5)

I~TIARit 7tT EtT rT;)

The parameter estimation procedure does not inherently order the scattering centers according range,

so after the parameter estimation procedure the scattering centers are sorted a placed in ascending order

according to range.

3.4 Vector Quantization

Depending on the classification algorithm, (these algorithms are described Section 3.5) the vector

quantization process assigns a code book value which corresponds to a predetermined clustering center
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within the 5 dimensional feature space created by the 5 parameters that define each scattering center

or the 5 x T dimensional feature space created by the entire set of T scattering centers of the range

profile. The location of the clustering centers are found using the K-means clustering option in LNKnet

which is a multi-purpose clustering and classification software package developed by MIT Lincoln

Laboratories.

Specifically, the clustering centers are found by normalizing each column of Equation (3.5), with

respect to the entire training data set, to zero mean and unit variance. The training data set contains

range profiles from both targets at all aspect angles of interest. Once the clustering centers have been

defined, each normalized scattering center is assigned the codebook value which corresponds to the

closest clustering center with respect to Euclidian distance. Range profiles from the evaluation data set

are normalized by the same mean and variance of the training data set and are vector quantized to the

same clustering centers derived from the training data set

If each scattering center of the kth range profile is vector quantized, this range profile is repre-

sented by a sequence ofT symbols (integers in this case) from the symbol set V = {VI,tV2 .... ,Vrn,. ... IVM},

where M is the number of symbols. The k"h range profile is written as

o = ... ...
91 t2  t. t

where T is the number of scattering centers and Ot. = Vm. Similarly, if the entire range profile is

vector quantized to one code book symbol, a sequence of range profiles is represented in the same

way except that T corresponds to the number of range profiles in the sequence and t, is the nth range

profile.

3.5 Classification using HMM's

Referring to Figure 3.1 the HMM classification block has 2 inputs. One of these inputs is the

track history from the tracking system and assumed to be accurate to within ±5* (16). The other input

is the vector quantized range profiles.

In general, the classification process is composed of two distinct procedures: the training

procedure and the classification procedure. During the training procedure a HMM (or several HMM's

depending the classifier implementation) for each target is synthesized from the training data set
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using the Baum-Welch reestimation procedure (21) (22). Classification of unknown range profiles

(or sequences of range profiles) is accomplished by calculating the probability of the unknown range

profile given the HMM (or HMM's) from each class. The class with the highest probability is assigned

to the unknown range profile (or sequences of range profiles).

3.5.1 HMM Implementation The temporal relationship between the scattering centers as well

as the range profiles suggest that a left-right HMM is well suited for this problem. As stated in Section

2.4.12, a left-right HMM does not allow state transitions to a lesser state. Also, the initial state is

always state 1. In Section 2.4.12.3, the Baum-Welch training procedure with multiple sequences and

scaled forward-backward coefficients is discussed and the justification for why Equations (2.107) and

(2.108) will not work is given. In this section, the training algorithm developed for this research effort

will be described.

The modified reestimation equations used for this research effort are

FK( I )) t

_'r_ 1 Ok •~for 1= <s <i b N.+ and, 1(j Nan

m = " (3.7)

E , !. &ka (0,(i)

for 1 < i < N and 1 _<m _< M. To show why Equations (3.6) and (3.7) are valid, first Equation

(3.7) is expressed in terms of the unscaled at,. (i) and fit. (i) coefficients as

,k

k )= K k T I. &k (i3.7)

(r(m) of tticoeffi=ins
K- T C

Ek=l n= k. t.

C n= FT CIL k (i)#k .(i)

EK= I.= "T _k. (i)

E . = , "r ,• ( i )(3 .8 )
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for 1 < i < N and 1 < m < M. Thus, (3.7) is equivalent to (2.106). Similarly, Equation (3.6) is

Y]n=l

N,,= = [-t() (3.9)

for 1 <_ i <_ N and 1 < j _< N. The additional 1/cf. factor in Equation (3.9) does not appear in

(2.105), but was emperically found to work well for training left-right HMM's. A purely heuristic

argument to explain why (3.9) works is that the 1/c k factor slightly enhances the more probable

observation sequences because the c1% factors are generally smaller for the more probable observation

sequences. As a result, the state transition probabilities are driven by the most likely observation

sequences. Because, (3.9) is not equivalent to (2.105) the training procedure does not insure that

P(O IX) > P(O IA ), but it causes just enough equivocation to prevent P(O IT) from settling at a

less than optimum critical point. The training procedure developed for this thesis and the experimental

results that validate this training procedure are found in Chapter IV.

3.5.2 Classification Based on a Single Range Profile The HMM classifier can be implemented

to classify unknown targets based on a single range profile or on a sequence of range profiles. Classi-

fication using single profiles is desirable because ciassification is nearly instantaneous and it generally

requires only a rough estimate of the aspect angle. Using this method several HMM's, one for each

aspect angle sector, can be used to represent the target. For example, a HMM could be synthesized

using range profiles of the target over a 100 by 10° sector at the nose of the target. When the tracking

system shows the target in that sector the corresponding HMM's for each target for that sector are used

to classify the unknown target. A block diagram of such a classification algorithm for a single sector

is shown in Figure 3.3.

3.5.3 Classification Based on Single Looks at Multiple Range Profiles To identify the target

after a sequence of range profiles is received and processed, the single look classifier shown in Figure

3.3 must be modified slightly so that it waits to make the classification decision after the entire range

profile sequence has been processed. So, the classification decision is now made by comparing the sum

of the individual range profile log probabilities for each single look HMM's.
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Figure 3.3. Single Range Profile HMM Classifier

3.5.4 Classification Based on Sequences of Vector Quantized Range Profiles Although clas-

sification based on a single range profile may be desirable, only part of the available information about

the target is used. Assuwisng that the target makes a smooth transition thecag e aspect angle space,
how the range profiles change from aspect angle to aspect angle also provide information that could be

used for target classification (17).

One way to model the range profile changes is to reduce the entire range profile to one symbol via

a vector quantization process. One HMM per aspect angle sector is synthesized for each target using

sequences of range profiles (one integer per range profile). The classifier implementation for multiple

range profiles is very similar to the single range profile classifier shown in Figure 3.3. The primary

difference between the two is that the HMM is designed to model the change between sequences of

range profiles (each range profile is represented by one symbol) instead of a sequence of scattering

centers. Therefore, the classifier requires a number of range profiles to make the classification decision.

Although the temporal relationships between the range profiles if used with this type of classifier, the
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temporal relationships between the individual scattering centers a!&ng the range profiles are essentially

lost by condensing all of the information of each range profile to a single number.

3.5.5 Classification Based on the State Transitions vf Multiple Range Profiles Ideally, the

classifier should model both the temporal relationships between the scattering centers as well as the

temporal relationships between the range profiles. Figure 3.4 shows an implementation of such a

classifier. The HMM's for each class on the left of the figure are Single Look HMM's in Figure 3.3.

The outputs of the class 1 and class 2 single range profile HMM's are best state sequences of the

individual range profiles as calculated by the Vertibi algorithm described in Sections 2.4.8 and 2.4.12.2.

The remaining HMM's correspond to states of the single range profile HMM's. The state I HMM for

class 1 is trained to model the scattering centers which belong to state I of the class 1 single profile

HMM for the entire sequence of range profiles. The following example illustrates the process.

1. Let 0 be a sequence of 5 range profiles from an unknown target which is modeled as having 5

scattering centers. Hence,

01 = 01 0o 0o, 0o 0o

02 = 02 02 02 024 02
tIi t2  93  4 t

03= 03 03 0~3 034 03l

04 = o0 043 04 04 o04
o5= 05 0o • so 0o4 0o5

2. The most probable state sequences through the Single Look HMM's are determined for each of

the above range profiles via the Viterbi algorithm. For this example, let the Single Look HMM's

be 3 state left-right HMM's. Now suppose that the most probable state sequence through one

the Single Look HMM's for all of the above range profiles is:

Q.' = 1 1 1 2 3

Q2 = 1 2 2 3 3

Q*3= 1 1 1 3 3

Q.4= 1 1 2 2 3

Q = 1 2 3 3 3
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3. The state sequences are arranged left to right and top to bottom as follows:

ot, = o, O t o, 3 o, oIi, 2 t3 o• o t2 o I

"o S2 = o1 o02, 0o23 o043 o0,4 0o,
o 3 = o, o •,, ot o , o4  o , o 3 o3 ot4,

From the above example, it is clear that the number of scattering centers that correspond to a

given state will not necessarily be the same for all range profile sequences. More importantly, the

Single Look HMM's for each class will generally segment the range profiles to different lengths for

each state. Because identification is based the probability of the observation sequence given the model,

shorter sequences have a clear advantage. Therefore, each state must be assigned a standard length for

reliable classification. Thus, all state observation sequences that are longer than the standard length

for that state are truncated to the preassigned length and state observaion sequences which are shorter

than the preassigned length are padded at the end by a null symbol.

The final classification decision is based on the comparison of the sums of the log probabilities

of the 5 state HMM's for each class and it occurs after a predetermined number of range profiles have

been received and processed.

3.5.6 Classification Based on Uniform State Transitions of Multiple Range Profiles This

classifier is similar to the classifier described above except, the segmentation of the range profiles do

not depend on the best state sequence of the Single Look HMM's. Instead, the range profiles are divided

evenly. For example, if each range profile contains 10 scattering centers, the first two scattering centers

will correspond to the state 1 HMM in Figure 3.4, the third and fourth scattering centers correspond to

the state 2 HMM, and so on. The null symbol is not required for this classifier because each sequence

will have a deterministic number of observations. Again the classification decision is based on the

comparison of the sums of the log probabilities of the 5 state HMM's for each class and it occurs after

a predetermined number of range profiles have been received and processed.

3.6 Summary

In this chapter the RTI algorithm has been described in detail. The front-end signal processing

and feature extraction processing is common to all of the classification algorithms to be implemented
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Figure 3.4. Multiple State Sequential Range Profile HMM Classifier

for this thesis. The vector quantization procedure reduces scattering centers to a single code book entry

or the entire range profile to a single code book entry depending on the type of classifier implemented.

In all, 5 classifiers will be implemented for this thesis. The experimental results pertaining to all phases

of the RTI process are given in Chapter IV.
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IV EXPERIMENTAL RESULTS

4.1 Introduction

The theoretical basis for the RTI algorithms developed for this thesis is given in Chapter II, and

Chapter MI contains a general description these algorithms. The purpose of this chapter is to document

the experimental results pertaining to all phases of the RTI process. Accordingly, this chapter is

arranged as follows:

"* Front-end signal processing and feature extraction.

"* Vector quantization.

"* HMM training verification.

"* Classification based on a single range profile.

"* Classification based on multiple vector quantized range profiles.

"* Classification based on multiple state separated range profiles.

"* Classification based on all of the above three classification schemes.

Conclusions and recommendations based on these results are discussed in Chapter V.

4.2 Front-End Signal Processing and Feature Extraction

The purpose of this section is to report the experimental results which verify the front-end signal

processing and feature extraction processing which are common to all of the classification algorithms

implemented for this thesis. Ihe front-end signal processing consists of transforming from linear

to circular polarization, filtering by a linear FM pulse compression transfer function, corrupting by

AWGN, and then filtering by a filter matched to the linear FM pulse compression filter. The Prony

model parameter estimation is the heart of the feature extraction processing.

4.2.1 Processing of a Known Idealized Range Profile The first part of this experiment is

conducted with a known idealized range profile of six point scatterers. The point scatterers are sampled
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at 8 times the bandpass Nygnist rate to improve the granularity of the ensuing plots. The equation to

generate the point scatterers is expressed in the discrete frequency domain as follows:

X.'[k] (ejw&* +e ÷ + ejwk(*+16) + +eei-(f+-) + eiw(N-+))

k (T.N- B ) _

B k= 0,1,2,..., N-1 (4.1)
Af

B 1.5 GHz: bandwidth

1
8. B = 12 GHz: sampling rateTa

Af c = 5.859 MHz: frequency step size, RE = 25.6 m
2RE

N _-- = 2048: number of discrete frequency samples
Af

k k
Wk -- 27rf.TN- = 27rk: normalized discrete frequency

xy vv, vh, hh, orhv: polarization (4.2)

The IFFT of X3 ,[k] has 6 point targets at 3.2 m, 6.4 m, 6.6 m, 12.8 m, 13.2 m, and 24 m. A plot for

a single polarization of the IFFT of X. [k] is shown in Figure 4.1. In this plot, the range extent is

25.6 meters and the number of sample points is 2048, which corresponds to 8 samples per 0.1 meters

in the discrete range domain. The RTI system block diagram shown in Figure 3.1 gives the general

signal flow. Thus, the 4 linear polarized signals are transformed to 2 left circularly polarized signals

by equation (2.11) to yield

Xh1[kJ = (Xhh[kI+jXh.[k])

X,,Itk] = 1(X.. [k] + jXh. [k]).-

At this point, Xhl[k] and X,[k] are multiplied by an over sampled linear FM transfer function, F[k].

F[k] is the FFT of equation (3.3) where Ta = 8. B and n = 0, 1, 2,..., 2047. Without adding any

noise, the 2 signals are then matched filtered by F" [k]. Noise is not added to these signals so that the
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effects of the filtering and feature extraction can be clearly seen. To stay consistent with the notation,

the signals out of the matched filter are Si[k] and ShL[k].

Figure 4.2 shows the point scatterer at 3.2 m for a single polarization before and after filtering by

the linear FM pulse compression transfer function and matched filter. The distance between the peak

and the first null of the unfiltered signal is 0.1 m, which is the expected range resolution for a bandwidth

of 1.5 GHz. After filtering by the 750 MHz linear FM transfer function and matched filter, the shape

of the pulse is about the same but the range resolution is approximately 0.2 m. Figure 4.3 shows that 2

point scatterers separated by 0.2 m can be separated if the bandwidth is 1.5 GHz. However, after the

matched filter the two scatterers appear as I scatterer. Referring to Figure 3.2, the actual bandwidth is

slightly less than 750 MHz and hence the actual range resolution is just over 0.2 m. In Figure 4.4 the

point scatterers at 12.8 m and 13.2 m are clearly separated before and after filtering. Although all of

the point scatterers are generated with a magnitude of 1, interaction between the scatterers, especially

after the matched filter, causes the relative amplitudes to vary.

S,,v[k] and ShI[k] are identical in magnitude and phase, therefore the six point scatterers are

circularly polarized. Before the Prony model parameter estimation procedure, S,, [k] and Shi [k] are

truncated to the 116 frequency samples well within the bandwidth of F[k]. The resulting Prony

model parameter estimation output is shown in Figure 4.5. All of the point scatterers have a circular

polarization ellipse. Also, the 2 point scatterers at 3.2 and 3.4 meters are clearly separated even though

the parameter estimation procedure inputs had bandwidths considerably less than 750 MHz.
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4.2.2 Processing Typical Xpatch Range Profiles The second part of this experiment is con-

ducted using typical Xpatch range profiles. In this case, the front-end signal processing and feature

extraction are performed as described in Sections 3.2 and 4.2 with a SNR of 20 dB and f. = 1.5 GHz.

The SNR is expressed in terms of peak signal power to average noise power. The noise corruption

process is performed as follows:

1. The horizontal and vertical range profiles are transformed to the time domain using an IFFT

routine and are normalized so that the largest scatterer has an amplitude of 1.

2. Independent Gaussian noise is added to each range bin. The SNR refers to the level of the noise

compared to unit amplitude.

3. The range profiles are transformed back to the frequency domain.

Figure 4.6 shows typical range profiles after the matched filter from each or the two classes used

for this thesis. Although the change in aspect angle is approximately 1V, the range profiles change

dramatically. The scattering center at 12.8 m which is relatively large in Figure 4.6 A but it almost

disappears in Figure 4.6 B. It is also important to note that the relative distance between the first, second

and third scattering centers of the range profiles in Figures 4.6 B and D are almost identical. For this

reason, these two targets are difficult to separate by classification algorithms which identify targets by

matching peaks in the range profile to a templates. The GD algorithm described in Section 1.3.3 is as

example of this type of algorithm. The SNR out of the matched filter is approximately 10 dB above the

SNR ratio prior to the matched filter. All of the SNR's reported for the remainder of the experiments

described in this chapter are prior to the matched filter.

Figures 4.7 A-E summarize the results of this experiment. The IFFT's horizontal and vertical

range profiles out of the matched filter are shown in Figures 4.7 A and B respectively. The output of

the feature extraction process is given graphically in a Figure 4.7 C and in tabular form in Figure 4.7

D. Figure 4.7 E defines the parameters of the polarization ellipses in Figure 4.7 C.

The scatterer at 12.3 meters has the highest energy despite the fact that it is not one of the

larger scatterers in Figures 4.7 A and B. The reason for this is that the energy calculation, as given

by equation (2.14), is greatly effected by [p. I because of the Ipt. 12k factor. Therefore, scatterers

with relatively large ptg, I coefficients will have more energy. The scatterer at 12.3 meters has the
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Figure 4.6. Typical Range Profiles from Class I and Class 2 After the Matched Filter

greatest energy because it has the largest IPt. I coefficient (Ipt. I = 1.044) as shown in Figure 4.7

D. This phenomenon is further illustrated by the 6 scatterers between 13.7 and 16.8 meters. All of

these scatterers have relatively high amplitudes in the IFFT range profiles, but they have small Ipt. I

coefficients and extremely low energy - low enough so that their polarization ellipses are too small to

be seen in Figure 4.7 C.

Its important to note that the amplitudes of the scattering centers of the horizontal IFFT range

profile in Figure 4.7 A are generally larger than the amplitudes of the scattering centers of the vertical

IFFT range profile in Figure 4.7 B. Accordingly, the orientations of the major axes (OA) of the

polarization ellipses in Figure 4.7 C are generally tilted toward the horizontal h axis.
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4.2.3 Range Profile Computing Time Both the front-end processing and feature extraction

processing algorithms are implemented in MATLAB and each Xpatch signature takes 10 to 15 seconds

to process on a Sun Sparcstation 2 workstation. MATLAB is inherently slow because it interprets the

program a line at a time instead of compiling the program into machine language. The majority of

the computing time, however, is spent doing the SVD, which MATLAB has implemented in machine

language. As will be shown in the following section, the amount of processing time per range profile

has far reaching implications.

4.3 Vector Quantization

The next step in the RTI process is vector quantization. As discussed in (22) and shown in the

next section, there is a definite trade-off between the number of clustering centers or number of code

book symbols and quantization error. That is, the B matrix of the HMM must have as many columns

as code book symbols. Increasing the size of the B matrix increases the number of parameters that

need to be estimated during the HMM training procedure which in turn increases the size required for

the training set. Thus, the purpose of this experiment is to determine the quantization error versus M,

number of code book symbols.

Figure 4.8 shows the average quantization error versus M (on a log scale) where each scattering

center of the range profile is vector quantized. The clustering centers are found using the K-means

clustering option in LNKnet. In all, 280,000 normalized scattering centers (140,000 from each class)

from 28,000 range profiles are used for this experiment. As Figure 4.8 clearly shows, the average

quantization error decreases linearly as M increases between 16 and 64. For M greater than 64,

however, the average quantization error decreases less between 128 and 1024.

The same experiment is conducted for the range profile vector quantization as shown in Figure

4.9. In this experiment a 50 dimensional feature vector is vector quantized. The relationship between

the average quantization error and M is linear for M less than or equal to 1024. The information

learned from this experiment and the HMM training verification discussed in the next section is used

to determine the size of HMM's.
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4.4 HMM Synthesis

With respect to the HMM classification algorithms developed for this thesis, the most critical

process is the solution to Problem 3 (ref Section 2.4.4) - the estimate of the parameters of the HMM's

given the observations. Of the 3 HMM design problems stated in Section 2.4.4, Problem 3 is also the

most difficult because, unlike the other 2 problems, it does not have an exact analytical solution. With

this in mind, the purpose of the experiments in this section are two fold-

1. To gain insight as to how much training data is required to adequately train the HMM's.

2. To insure that the training procedure implemented provides reasonable estimates of the HMM

parameters.

4.4.1 Training Data Requirements The amount of training data required depends on the num-

ber of model parameters (22). To make a rough estimate of the amount of training data required, this

experiment is conducted as follows. First, twu hypothetical left-right HMM's are created. Let the first

model be labeled I and let the second model be 1a. These model parameters are

1. Model -1: (N 5 and M = 32)

1.0

0.0

r 1 = 0.0 (4.3)

0.0

0.0

and

0.3 0.4 0.2 0.1 0.0

0.0 0.4 0.3 0.2 0.1

A = 0.0 0.0 0.6 0.3 0.1 (4.4)

0.0 0.0 0.0 0.4 0.6

0.0 0.0 0.0 0.0 1.0
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2. Model- la: (N= 5 and M =128)

1.0

0.0

7Fla = 0.0 (4.5)

0.0

0.0

and

0.3 0.4 0.2 0.1 0.0

0.0 0.4 0.3 0.2 0.1

A Ia = 0.0 0.0 0.6 0.3 0.1 (4.6)

0.0 0.0 0.0 0.4 0.6

0.0 0.0 0.0 0.0 1.0
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Next, Models I and Ia are used to generate observation sequences using the procedure given in Section

2.4.3. Each observation sequence has of 10 observations. Figure 4.11 shows a histogram of the

generated observations that correspond to each state normalized by the total observations that occur in

that state. Ideally, the normalized histogram of the generated observations should be about the same

as the representation of B I matrix shown in Figure 4.10. For Model 1, it appears that at stochastic

properties of the model are not well represented for observation sequences of 1000 observations or

less. That is to say, if less than 1000 observation sequences are used to synthesize a model using

the Baum-Welch training procedure the resulting model would show little resemblance to the model

which generated the observation sequences. As can be seen by Figure 4.13, the number observation

sequences required to adequately represent the model also increases. From this experiment, one could

conclude that 1000 to 5000 observation sequences would be required to train Model 1 and 10000 to

20000 observation sequences would be required to train Model Ia. Although not shown here, the

histograms of the A matrices for both models displayed similar properties.
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4.4.2 HMM Training The objective of the second part of this experiment is to insure that the

training procedure, which will be described below, yields reasonable estimates of the model parameters.

To do this, 2 additional left-right models are created, where N = 5 and M = 32. Let these models be

labeled Model -2 and Model -3. Model - 1 is the same as above. The B matrices of the 3 models are

shown in Figures 4.14 - 4.16 A. The A matrix for models 2 and 3 are

0.3 0.4 0.2 0.1 0.0

0.0 0.4 0.3 0.2 0.1

A 2  0.0 0.0 0.6 0.3 0.1 (4.7)

0.0 0.0 0.0 0.4 0.6

0.0 0.0 0.0 0.0 1.0

and

0.04 0.09 0.26 0.28 0.32

0.0 0.25 0.27 0.24 0.23

A 3  - 0.0 0.0 0.06 0.68 0.26 (4.8)

0.0 0.0 0.0 0.13 0.87

0.0 0.0 0.0 0.0 1.0

The 3 models are used to generate 10000 sequences (each with 10 observations) using the procedure

given in Section 2.4.3. These observation sequences are then used to train 3 models using the training

procedure developed for this thesis. This procedure is as follows:

I. Start with a uniformly distributed left-right model, X. That is,

0.2 0.2 0.2 0.2 0.2

0.0 0.25 0.25 0.25 0.25

A 0.0 0.0 0.33 0.33 0.34 (4.9)

0.0 0.0 0.0 0.5 0.5

0.0 0.0 0.0 0.0 1.0

4-17



and

1
bi(m) = -'l<i<5andl <m<32. (4.10)

32

2. Compute P(O JA)

3. Estimate the parameters of A using equations (3.6) and (3.7).

4. Compute P(O fAX).

5. Replace A with A. (Note: All B matrix coefficients less 10-11 are changed to 10-10. Rabiner

has shown that not letting the B coefficients approach 0 improves the classification rate (22).)

6. If P(O IX ) - P(O IA) A 0.01 terminate the procedure; otherwise, return to step 2 and repeat

the procedure.

The above training procedure is used to train 3 models; 1 for each observation sequence. The

B matrices after training are given in Figures 4.14- 4.16 B and the original B matrices and the

B matrices after training are overlayed in part C of Figures 4.14 - 4.16. The A matrices after training

are

0.296 0.402 0.201 0.101 0.0

0.0 0.409 0.296 0.199 0.096

A 1  = 0.0 0.0 0.604 0.297 0.099 , (4.11)

0.0 0.0 0.0 0.410 0.590

0.0 0.0 0.0 0.0 1.0

0.294 0.408 0.196 0.098 0.004

0.0 0.421 0.261 0.175 0.143

A 2 = 0.0 0.0 0.607 0.319 0.074 (4.12)

0.0 0.0 0.0 0.395 0.605

0.0 0.0 0.0 0.0 1.0
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and

0.039 0.088 0.261 0.288 0.324

0.0 0.274 0.258 0.235 0.232

'3 = 0.0 0.0 0.061 0.726 0.213 • (4.13)

0.0 0.0 0.0 0.151 0.849

0.0 0.0 0.0 0.0 1.0

Clearly, the training procedure is able to synthesize models that are almost identical to the original

models used to generate the observation sequences used for training. The most significant result of this

experiment is that the models are estimated with no - with the exception of knowing that the models

are left-right models - apriori knowledge of the original models.

In Figures 4.14 - 4.16 D, P(O IX ) is plot as a function of training epochs. Model - 1, which

has the least amount of overlap between states, trains with about 1/4 the number of epochs as Models

- 2 and - 3. Also, P(O IX ) increases rapidly during the first few training epochs for all three models,

but for Models - 2 and -3 the slope of P(O IX ) levels off and then increases sharply before leveling

off again. A possible reason for this is that the P(O IX) surface is more complex for Models - 2 and

-3 than it is for Model - 1. Using equation (3.6) allows the training procedure to search the P(O IX )
surface for a more probable model then would be found if the training procedure was allowed to stop

at a the first local maximum.

The next logical step is to see if the synthesized models can recognize observation sequences

that are generated from the corresponding original models. To do this, each of original models is

used to generate 200 observation sequences with 10 observations each. Each observation sequence is

then scored by each of the synthesized models and the model with the highest probability given the

observation sequence is declared the winner. Two measures are used for scoring:

"* P(O IX ) as calculated with the scaled forward algorithm.

"* P(O IQ *, A ) or the probability of the observation sequence given the best state sequence and

the model. P(O IQ ", A ) was calculated using the Viterbi algorithm.
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The correct classification using the P(O IA ) metric is 97.3 % and the correct classification for the

P(O IQ ", A ) metric is 96.5 %. Also, the confusion matrices for the both probability measures are

given in Tables 4.1 and 4.2.

Table 4.1. Confusion Matrix Using P(O IA)

Actual Chosen Model
Model Model -I Model - 2 Model - 3

Model- 1 192 2 6
Model - 2 0 199 1
Model - 3 7 0 193

Table 4.2. Confusion Matrix Using P(O IQ *, A)

Actual Chosen Model
Model Model - I Model - 2 Model - 3

Model - 1 192 0 8
Model - 2 3 196 1
Model - 3 9 0 191

The difference in the classification rates for both decision metrics is not statistically significant.

However, it is interesting to note that the primary source of confusion is between Model -l and Model-

3 even though Model - 1 and Model -2 have identical state transition matrices. From this it is apparent

that the B matrix parameters are more criical than the A matrix parameters.
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4.5 Classification Based on a Single Range Profile

For this experiment, each HMM of the single range profile classifier in Figure 3.3 is a left-right

model with N = 5 and M = 128 (5 by 128). Rabiner's research showed that classification accuracies

did not change appreciably for models with 5 or more states. For this reason, all of the HMM used for

this thesis will have 5 states. On the other hand, the choice of M requires a trade-off between average

vector quantization error and number of training sequences required.

Increasing M decreases the average vector quantization error, but the number of training vectors

increase. Considering that it takes 10 to 15 seconds to process every range profile used for training, the

number of range profiles required for training is a real issue. Referring to Figure 4.8, M = 128 is right

at the beginning of the 'knee' of the curve and for M > 256 the average quantization error is nearly

constant. Based solely on the average quantization error, M = 256 appears to be the best choice; but

computing time constraints forces M to be no more than 128. Even for M = 128, the computing time

to process the training data set is well over 100 hours.

The HMM for class 1 is trained using 14,000 vector quantized range profiles from vehicle 1.

Each range profile consists of 10 scattering centers and have a SNR of 20 dB. In all, the training set

consists of 140 noise independent range profiles for each of the 100 aspect angles within the aspect

angle sector. The class 2 HMM is trained with the same type of data from vehicle 2. Both models

are trained using the training procedure outlined in Section 4.4.2. The evaluation data set contains 600

profiles - 6 for each aspect angle - from each target at SNR's of 20 dB, 15 dB, 10 dB, and 5 dB, 0 dB,

and - 5 dB.

As a comparative test, the same data set is processed by the K-nearest neighbor (KNN) classifier

option in LNKnet. To do this, the range profiles from both the training and the evaluation data sets are

concatenated so that each range profile is represented by a 50 dimensional feature vector. The LNKnet

KNN classification algorithm is run with K equal to 1, 3, 5, and 7.

Figure 4.17 shows the classification results of both classifiers, for M = 128. As an indication

of the accuracy of the error rate estimates, the classification confidence interval for a classification rate

of 77 % is -11.7% with a confidence level of 95 % is shown in the bottom right comer of Figure 4.17.

Although the performance of the KNN classifier is better than the Single Look HMM at 20 dB SNR,

the HMM classifier displays better performance for SNR's less than 20 dB. The performance of the
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KNN classifier is not greatly effected by the value of K which is an indication that decision regions

within the 50 dimensional feature space are relatively dense.

To test the effects of range alignment on the classification performance, the target is allowed to

slide within the range window according to a Gaussian distribution with 0 mean and a variance of 2 m.

The tracking system is assumed to be accurate to within this 2 m window (16). As Figure 4.18 shows,

the classification accuracy drops about 10 %.
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4.6 Classification Based on Sequences of Range Profiles

Three of the classification algorithms developed for this thesis are specifically designed recognize

the target based on the inter range profile temporal relationship within a sequence of range profile. These

algorithms are described in Sections 3.5.4, 3.5.5, and 3.5.6. As described in Section 3.5.3, the Single

Look classifier makes its decision based on the the sum of the log probability outputs over several

range profiles.

All of the range profile sequences used to train and test the classifiers have a fixed length of 10

range profiles. In all 7 tracks (sequences of range profiles through the aspect window) are used. These

tracks are shown in Figures 4.19 and 4.20. Only tracks 1 and 4 are used for training, but all 7 tracks

are used to test the performance of the classifiers. Specifically, the training set for each class consists

of 3000 range profile sequences: 1500 from track I and 1500 from track 4. Each sequence contains 10

range profiles with SNR's of 20 dB. The evaluation data set has 375 range profile sequences from tracks

1 - 7 at SNR's of 20 dB, 15 dB, 10 dB, 5 dB, 0 dB, and -5 dB. With the exception of the Single Look

classifier which is trained using the data set described in Section 4.5, these training and evaluation data

sets are used in each of the following sequential range profile classifiers.
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4.6.1 Performance of the Single Look Classifier after Multiple Range Profiles The perfor-

mance of this classifier for tracks I and 4 and tracks 2, 3, 5, 6, and 7 is shown in Figures 4.21 and 4.22.

This classifier is track independent because it is trained on independent range profiles, but at 0 dB SNR

there is a significant difference in classification rates between tracks. Thus, there are tracks in which

these two targets are harder to separate. The two targets appear to be closest within the feature space

for track 6, which has the lowest classification rate as highlighted in Figure 4.22.
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4.6.2 Performance of the Sequential Vector Quantized Range Profile HMM Classifier As with

the Single Look Classifier, M is chosen based on the average vector quantization error and the number

of sequences required for training. Referring to Figure 4.9, the average quantization error decreases

linearly as M increases. Although it is apparent that M should be larger than 1024, the number of

training vectors required to train such a model would be prohibitive. For this classifier, M is chosen

to be 128, based solely on the number of training vectors required. The HMM's are trained using the

procedure outlined in Section 4.4.2.

Figure 4.23 shows the classification performance for tracks 1 and 4 at SNR's of -5 - 20 dB.

The classification performance for the tracks not specifically trained on is shown in Figure 4.24. The

performance is good for tracks I and 4 at SNR's of 20 dB and 15 dB, but for SNR's less than 15 dB

the performance drops rapidly. With the exception of track 6, the classification for the tracks not in the

training set is almost good as the performance for the tracks in the training set. Increasing the code

book size (M) will probably improve the performance of this classifier, but the amount of training data

required to train the HMM's may make the implementation of this type of classifier impractical.
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4.6.3 Performance of the Multiple State Sequential Range Profile Classifier Each of the 5

HMM's which correspond to the states of the Single Look HMM is itself a 5 state left-right HMM,

but M is equal to 129 instead of 128. The extra symbol accounts for the null symbol (required to

keep all state sequences the same length) which is discussed in Section 3.5.5. For this experiment the

observation sequence length for states 1, 2 and 3 is limited (or extended if necessary by the null symbol)

to 10 observations. The observation length for states 4 and 5 is set at 20. These observation lengths

are determined empirically. That is, state I through 3 normally have observation sequence lengths of

about 10 while the observation lengths for states 4 and 5 are normally about 20.

Each of the range profiles within these sequences is segmented into states using the Viterbi

algorithm which is implemented using logarithms to avoid underflow. Again, the HMM's are trained

using the procedure outlined in Section 4.4.2. Although this classifier is designed to use all 5 states,

the best performance is realized when only states 2, 3, and 4 are used. Thus, the classification results

reported here are based on the comparison of the log probabilities summed over states 2, 3, 4 instead

of over all states.

Figure 4.25 shows the classification performance for track I and 4 at SNR's of-5 - 20 dB. The

classification performance for the tracks not specifically trained on is shown in Figure 4.26. Consistent

with previous results, the classification rate for track 6 is significantly worse than the other tracks.

The performance of this classifier will probably improve if the training set is increased. However, the

training set is limited by computing time. For 3,000 range profile sequences of 10 range profiles each,

30,000 range profiles must be processed. Essentially, this classifier, as well as the other sequential range

profile classifiers, requires 10 times the number of training range profiles as the single look classifier.

4.6.4 Performance of the Uniform Multiple State Sequential Range Profile Classifier The

HMM's for this classifier are all left-right models with N = 5 and M = 128. As described in Section

3.5.6, the range profiles are evenly segmented. Because each range profile sequence has 10 range

profiles, each state contains 20 observations per range profile sequence. As shown in Figures 4.27

and 4.28, the performance of this classifier is almost identical to the performance of the Multiple State

classifier. Again, track 6 has a classification rate that is significantly worse than the other tracks.
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Figure 4.25. Multiple State Sequential Range Profile Classification Rate (Tracks 1 and 4)
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Figure 4.26. Multiple State Sequential Range Profile Classification Rate (Tracks 2, 3, 5, 6, and 7)
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Figure 4.27. Uniform Multiple State Sequential Range Profile Classification Rate (Tracks 1 and 4)
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4.6.5 Effect of Range Profile Alignment on Overall Performance Figure 4.6.5 shows how each

of the classifiers compare for tracks I and 4 when the range profiles are centered within the window.

Figure 4.6.5 shows the performance of each of the classifiers when the range profile is allowed to vary

in range within the range window with of Gaussian distribution (mean = 0 and variance = 2 m). The

performance of all of the classifiers is reduced, but the overall performance is still very good. The

classification performance for tracks 2, 3, 5, 6, and 7 shows similar sensitivity to variations in range.

4.7 Summary

In this chapter the experimental results which characterize the entire RTI process are presented.

The front-end signal processing and feature extraction processing is verified using a known idealized

range profile and typical Xpatch range profiles. The HMM training procedure is critical to the overall

classification process. This procedure is verified by synthesizing HMM's using the training procedure

from sequences that are generated with known models. The synthesized HMM's are almost identical

the original HMM's used to generate the training sequences. The overall classification performance is

excellent with the best results coming from the single look multiple range profile classifier when the

range profile is centered in the range window. When the location of the range profile is allowed to

vary within the range window, the performance of the Uniform Multiple State Sequential Range Profile

classifier is about the same as the Single Look classifier.
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V CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

The goal of this research effort is to develop an RTI algorithm designed to identify aircraft

using a Linear FM pulse compression HRR radar as a sensor. As a means of accomplishing this goal,

the RTI process is divided into three sub-processes: front-end signal processing, feature extraction,

and classification. The theory relating to these three sub-processes is presented in Chapter HI and the

Chapter m describes the RTI algorithms developed for this thesis by drawing upon the theory presented

in Chapter II. The experimental procedures and results are given in Chapter IV. The purpose of this

chapter is to provide the conclusion and recommendations based, in part, on these experimental results.

5.2 Conclusions

5.2.1 Front-end Signal Processing and Feature Extraction The purpose of the front-end signal

processing is to emulate noise corrupted, circularly polarized HRR 'chirped' radar signatures. To

validate this procedure, an idealized, known signature as well as typical Xpatch signatures are processed.

These results, which are given in Section 4.2, compare well with theory. In short, the front-end signal

processing is able emulate a physically realizable HRR 'chirp' radar. It should be noted, however, that

this radar, which is simulated in software, is itself an ideal radar; free of all of the problems associated

with implementing systems in hardware.

Based on the classification performance, which is discussed below, the feature set provided by

the Prony Model describes the target well. However, at this point a near-real-time system could not

be implemented using this feature extraction process because it simply takes too long to process the

range profiles. The SVD in the parameter estimation procedure is the primary source of delay. The

processing delay will be decreased if the bandwidth is decreased which in turn will also decrease the

size of the matrix on which the SVD must be performed.

5.2.2 Classification Performance The classification algorithms developed for this thesis are

based on the temporal relationships between: the individual scattering centers of HRR radar range

profiles, the temporal relationships between range profiles, or both. One of the underlaying assumptions,

behind all of these algorithms is that better classification performance will be realized if sequences of
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observations are tied together in some logical way and not treated as individual events. The left-right

HMM is proposed as a possible way to represent the temporal relationships between the observations

in these sequences. The classification of any given HMM classifier is directly related to how well

the parameters of the HMM's within the classifier are estimated by the training procedure. Therefore,

the training procedure is a critical part of the RTI algorithms. The HMM training procedure and the

performance of the classifiers developed for this thesis are discussed below.

5.2.2.1 HMM Training Clearly, the results presented in Section 4.4 show that the HMM

training procedure is capable of estimating the model parameters to a high degree of accuracy. The

significant finding here is that the model parameters are estimated with no apriori knowledge. The

classification performance of all of the classification algorithms suggest that the training procedure is

also able to accurately estimate the parameters of the HMM's used for classification.

5.2.2.2 Performance of the Single Look Classifier The Single Look classifier performs

well, but at 20 dB SNR the KNN classifier is better. However, the Single Look classifier is more tolerant

to noise. It should be noted that both the Single Look and KNN classification rate will approach 100 %

if the size of the aspect angle window is decreased. Because the classification rate is well below 100 %

for the 100 by 100 aspect angle window, the size of the aspect angle window represented by one HMM

is essentially limited to this size. If more targets are added, the size of the window may have to be

decreased further.

However, if the Single Look classifier waits to make the classification decision after a number of

range profiles are processed, the classification performance is greatly improved. For sequences of 10

range profiles, the classification rate is almost 100 % for SNR down to 5 dB and about 95 % for a SNR

of 0 dB. At a SNR of -5 dB, the classification performance drops dramatically. Thus, this classifier is

good to about 0 dB SNR. In addition to this classifiers high tolerance for noise, it is also aspect angle

track invariant. That is, it is not sensitive to how the target travels through the aspect angle window.

A major consideration in any HRR RTI system is range profile alignment and most of the

classifiers in the literature are extremely sensitive to this alignment (17). However, the performance

of this classifier does not decrease dramatically when the target is allowed to vary within the range
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window. Therefore, if the tracking system is able to keep the target centered within the range window

within a normal distribution of ±2 m, this classifier will work without a centering process.

5.2.2.3 Performance of the Vector Quantized Sequential Range Profile Classifier The

performance of this classifier is good for SNR of 10 dB and above, but drops rapidly below 10 dB.

However, even though this classifier is trained on tracks I and 4, it is not overly sensitive to the aspect

angle track. The degraded performance below 10 dB SNR is caused by a combination of less than

adequate training and too much error induced by vector quantizing. The solution to these two problems

is to increase the code book size and the training data set size. However, as discussed in Section 4.6.2,

if enough training data is not available for a code book size of 128, the benefits of increasing the code

book size to reduce the quantization error will be degraded by reducing the training set further. This

classifier is also not overly sensitive to range alignment, but the degraded performance below 10 dB

SNR limits its usefulness.

5.2.2.4 Performance of the Multiple State Sequential Range Profile Classifier Consid-

ering that this classifier accounts for both the temporal relationships between scattering centers of the

individual range profiles as well as the temporal relationships between the range profile, this should

have performed better the Single Look classifier which sees each range profile as an independent event.

One possible explanation is that by normalizing the range profiles some of the information about the

absolute RCS and how it changes with aspect angle is lost (4). In effect, the classification process is

optimized for the Single Look classifier because the range profiles are normalized and therefore more

correlated between aspect angles. It should be added that the classification rate for this classifier may

improve if the size of the training set is increased. As with the Vector Quantized Sequential Look

classifier, this classifier is not overly sensitive to the aspect angle track or range shifts.

5.2.2.5 Performance of the Uniform Multiple State Sequential Range Profile Classifier

Although the performance of this classifier is slightly better when the range profiles are centered than

the classifier discussed above, it is not statistically significantly better. However, this classifier is not as

complex as the Multiple State Sequential Range Profile classifier because the dependence on the Single

Look HMM's is eliminated. Moreover, when the locations of the range profiles are allowed to vary the

performance of this classifier is better than the Multiple State Sequential Range Profile classifier and is
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nearly the same as the Single Lock classifier. Thus, the performance of this classifier is comparable to

the Single Look classifier even though it is trained with a less than adequate training set.

5.3 Recommendations

In this thesis the problem is limited to two classes, but the performance of the Uniform Multiple

State Sequential Range Profile classifier may be better than the Single Look classifier if the number

of classes is increased. Thus, first and foremost the number of classes should be increased so that the

advantages and limitations of the different classifiers can be better understood.

Secondly, the feature extraction processing time must be addressed by either improving the

Prony Model parameter estimation procedure or reducing the amount of data which must be processed.

Short of changing the Prony Model parameter estimation procedure, processing time can be reduced by

decreasing the bandwidth. However, reducing the bandwidth also decreases the range resolution. So,

there is a clear trade-off between processing time and bandwidth. Therefore, the relationship between

bandwidth and classification performance should be investigated.

In this thesis, three 5 state left-right HMM classifiers are implemented, but there are hundreds

of different HMM configurations which might be tried. Consequently, continued research should also

investigate innovative ways of configuring the HMM's with the goal of finding a sequential range

profile classifier with improved performance.

Finally, the human visual system recognizes objects based on motion, color, and form. These

three feature sets are processed in separate areas of the brain before being merged to form a solution

(32). Of course this explanation overly simplifies the way the brain does pattern recognition, but the

point is that within the brain, identification is not based on one feature set alone. In this thesis, an

attempt is made to use features derived from independent range profiles (form) and features derived

from sequences of range profiles (motion) with good results. Perhaps the real solution to the HRR RTI

problem as well as other target recognition problems will be resolved when more is understood about

the brain and how it processes information.
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Appendix A. DERIVATIONS OF IMPORTANT 11MM VARIABLES

A.I Introduction

In this appendix the derivations that apply to HMM will be presented. Specifically, the forward

and backward algorithms, -t. (i), and ,•t. (i, j) will be derived.

A.2 Derivation of the Forward Algorithm

The forward variable is defined as

at. (i) = P Ph Or,... O1.4t. = SiI') (A.1)

or the joint probability of the partial observation sequence 0,t Or-- -. O. and being in state Si = qt.

at time t,,, given the model A (22) (21). at. (i) is evaluated inductively as follows:

1. Initialization:

at,(i) = P(0t,,qt, = S,\I), 1< i <N

= P (0, q,, =S,,A) P (qj, = SJA), 1 < i < N (A.2)

- bi(Ot.)ri, 1 < i < N

2. Given at. (i) for 1:_ i < N calculate a (j) by induction:

at.+,(j) = P (O, O, 0... O I+,,qt. +, = .j) 1\ < j < N t, < t., < tiT_,

= P (01.+1 10tOt,...Of.,qt.+, = Sj, X)

P(0,,Ot,. .. O,.,qt., = S,1I\), 1 <j < N ti < t. < tr-1

= b, (Ot..I) P(Ot, 2 *O*Ot.1,qt., 1 = Sj1,) , 1 < j <_ N t < t•. < tT-1

The last term on the right side can be expressed in terms of the known quantities aij and at. (i).

N

P (Ot, O,,...O,., q.,, = Sj1,) = E P (0, Ot, O .O,., qt.+, = Sj,q,. = Si1\)
i=1

N

P 2 P(q. S=.jlO,0, q. = S,,A)
iA-
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P (OtOr,... 0,q,. = SiIX)
N

= aijct. M

It follows from direct substitution that

N

at.(j)= bj (Ot.+,) Zaujct.(i), 1 < i < N (A.3)

tI <• t. _< t T-1

3. The final step is the termination step in which the desired probability, P(OIA), is computed.

N

P(Ot'O"-'"OtrIA) = EP(OtOg'...Ot,qt, = S, IA)
i=1

N

P(OIA) = E ZCtMi) (A.4)
i=l1

A.3 Derivation of the Backward Algorithm

The derivation of the backward algorithm is similar to the forward algorithm. The backward

variable #,t. (i) is defined as

t. (W = P (O,.+, Iot., .. • o, Iq,. = S,, X). (A.5)

Hence, ft. (i) is the probability of observing the partial observation sequence Og.+, Ot.+- OtT,

given state 3, and time t. and the model A (21) (22). Again the derivation proceeds inductively as

follows:

1. Initialization: /PtT (i) is initialized to 1 for all i to maintain the desired probability. 0 is not

explicitly defined for t. > tT, so the following probability is arbitrarily set to 1 (22).

ftT(i) = P(OT, '"OI,+jqt, S=,A) = 1, 1<i<N (A.6)

2. Induction: Compute /31. inductively using j.+, (i).

flt.(i) = P(Oj.+, .. OtTqt. =S,A)
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N

E ZP(O 8..'+ O~t"qt... = 5 1Wt. = SiA)
j=1

+ E P~q+ =Sjqt. = S.,A) P (0, 1 .. Ogt, qt.41 = Sj,qg. SilA)
.1=1

N

E aijP (Ot.., 10..---Ot,,+ 0
T qg.+, = S,, q1. = Si, A)

j=1

= ,b O~)P (O g..+2 ... 09Tqgt. 1 = Sp, qg = Si A)

By the Markov property, Ot,.+.2 -- Ot,. is independent of q1,, = S,. Therefore,

tfhAi) = ajb, (Ot.+j)P (Oj.+2 
0-tT Iqt.+, Sj, A)

Which is the desired relationship

Pt()= a,,bj (Ot.+ 2) Jh.H (j), tT..1 Ž! t. >-t (A.7)

1<i<N.

3. Termination: The desired probability is computed as

N
P (Ot, ... gT P\) P ~j(0t, - -Ot,, qt,= Si JA)

N

P q,= Si IA) P (Qt Ot I qt, =Si,,A)

N

= , WrP (091 1012 ... Ot~,,qt, Si, A)
i=1

P OI..OtT lqgt, SilA)
N

= iribi (0t,) ptk, (i) (A.8)

A.4 Derivation of -yt. (i)

-t()= P(qt, = SaI~j,1  0
'R

0 j+l- "OtTIA)
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P (0,,... 0.0,,.., --- 0tlq,. = S,, A) P(q,. = SIA)

j=, P (Olqj. = Sj,A) P (q,. = SjJA)

P(O0,, ... O,.Iq, = Si,,)P(qt. = SIA)P(O.., ... OtIq,. = S,,A)
EJ=1 P(Olqt,. =Sj,A)P(qt. =SIA)

The last factor in the numerator on the right side is, by definition, f1t. (i). The remaining factors in the

numerator are equal to at. (i) as is shown below.

P(Ott ... Ot.jq, =S,,,A)P(q,. =S,A) = (P(o,,ot2,. 5,qt. = Si P\)) P Wt. Si [A)
P q.= SIJA) Sf)

= at. (i)

And similarly, the denominator is equal to P(OIA), such that

N (P (0,qt. = SjJA)]
=P(OIqt" = SjA)P(qj" =SjA) = (-'qt. =-'S )) P (qt. =S 3 JA)

j=1

N

= ,rtT(U)

j=1

N
= F_,a',(J)•,.(J)

j=1

= P(OIA)

Now -"t. (i) is expressed in terms of at. (i) and fit. (i) so that

-ft.W = aat. (i)01.W (A.9)P(OIA)

A.5 Derivation ofJ(i,j)

.(i P P(O,qt. = S,,qt., = SIA)
P (o A)
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P (o0, -.. 0,, qt. = Si, qt+, = S3 IA ) P (O.+,... On, q,. = S,, q., = SjIA)

P (o IA)

In first term the numerator the joint probability of Ot, ... Ot, and qt. = Si is independent of

qt.+l = S, so

P(Ot,,...,,qt. = Si, qt.., = SA) -- P(O, ... O,.,,qt. = SJA )P (qt,+, = SjIA)

- Wt(i)P(qt., = Sj) P

The second term in the numerator can be rearranged so that

P (O,.+, "'.OtT,qt. = S = S ) = P (Ot.÷+ ... Otrlot.+' qt- = Si, q,.+, = Si ,A)

P(O1,+,,qqt. Si,,q,.+, = S, JA )

-P (O.+2 ... Otjq,ý+, A ) P (Ot.+,qt" = Si, qtn+, =SJA)

-- f.+, (j)P (O.+,, q,. = S,, qt.., = Sj.I )

The second equality holds because Ot.+2 -"'" OT is independent of Ot., and qt, = Si. It follows that

= t. (i)i., (j)P (0,.+,A , qt. = Si, qt.+, = SjIA )P (qt.+, = SiJA)

at. (i)P,.+, (j)P (0.+, = q S, qg.+, = Sil )
II P (o I1 \

at., (i)#~t,+, (j)aijbj (01.,+)

P( A-5
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Appendix B. XPATCH DATA FORMAT

B.] Introduction

In this appendix Xpatch data format is outlined. Xpatch is written in FORTAN, therefore the

data format is described in those terms. The information contained in this appendix was supplied by

Wright-Labs/AARA.

B.2 Output File Format

The output file is an unformatted direct access file with a record length of 32 bytes. The first

several records contain the simulation configuration parameters and the subsequent records contain the

complex polarimetric frequency samples. The number of the header records depend on the number of

nonuniform frequency samples as described in the following paragraph. The sample FORTRAN open

statement shown for a SUN workstation has a record length given by the number of bytes. For other

platforms, such as SGI and VAX, the record length is specified in the number of 4 byte words and has

a value of 8.

OPEN( UNIT = lundb,

: FILE = filnam,

: ACCESS = 'direct',

: FORM 'unformatted',

: STATUS = 'old',

: RECL = 32)

The variables contained in the header records can be read as shown with the variable declarations

and descriptions given by Table BI. The bottom of the code shows how to read the nonuniform

frequency samples and assumes that an array freqSample has been declared with maxFreqSamples

elements.

READ(lundb, REC = 1) simTitle(l:32)

READ(lundb, REC = 2) simTitle(33:64)
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READ(lundb, REC = 3) modelTitle(l:32)

READ(lundb, REC = 4) modelTitle(33:64)

READ(lundb, REC = 5) (simDate(i), i=1,.3), (modelData(i), i=1,3),

snglOpt, edgeOpt

READ(lundb, REC = 6) multOpt, rayDensity,

zoneCeilSize, subdivFac,

nuniMaxBounce, angStartTgtAz,

angStartTgtEl, nuxnSigProfileAz

READ(lundb, REC = 7) numSigProfileEl, angSpacingAz,

angSpacingEl, freqSpacingType,

freqStart, numFreqSanmples,

freqSpacinglnc, numHeadersLeft

IF (freqSpacing~rype .EQ. 2) THEN

IF (numpreqSamples .GT. maxFreqSamples) THEN

WRITE(O,*)'Number of frequency samples greater than '

'array dimension,

WRITE(O,*)'Number of frequency samples = ',numFreqSamples

WRITE(O,*) 'Array freqSample dimension = ',maxFreqSamples

STOP

ENDIF

freqSaniple(l) =freqStart

IF (num~reqSamples .GT. 1) THEN

numrec = (numFreqSamples - 2) / samplesPerRecord + 1

DO 10 irec=l,numrec

istart = (irec - 1) * samplesPerRecord + 2

iend = min(istart+sainplesPerRecord-l. numpreqSamples)

READ(lundb,REC=nxtrec) (freqSample(i), i=istart, iend)

B-2



nxtrec = nxtrec + 1

10 CONTINUE

ENDIF

ENDIF

Table B. 1. Xpatch Output File Header Variables

Variable Name Variable Type Variable Description

simTitle character*64 title of simulation run
modelTite character*32 title of model file
simDate 5 * integer*4 date of simulation run
modelDate 5 * integer*4 creation date of model file
snglOpt integer*4 single bounce option
edgeOpt integer*4 edge diffraction option
multOpt integer*4 multiple bounce option
rayDensity real*4 incident ray density
zoneCellSize real*4 zone cell size for ray processing
subdivFac real*4 ray tracer subdivision factor
numMaxBounce integer*4 maximum number of bounces allowed
angStartTgtAz real*4 starting target azimuth angle
angStartTgtE! real*4 starting target elevation angle
numSigProfileAz integer*4 number of azimuth signature profiles
numSigProfileEl integer*4 number of elevation signature profiles
angSpacingAz real*4 azimuth angular spacing increment
angSpacingEl real*4 elevation angular spacing increment
freqSpacingType integer*4 sampling type (O=uniform, I =nonuniform)
freqStart real*4 illumination starting frequency
freqSpacinglnc real*4 uniform frequency spacing
numHeadersLeft integer*4 number of headers remaining in file

The frequency data is written to the output file with the contents of each record corresponding to

four complex double precision numbers, using complex*8 representation. The first complex number

in each record represents the VV polarization, followed by VH, HV, and HH polarizations. The data

records increment according to increasing frequency. A set of numFreqSamples records corresponds

to a single signature profile. The first signature profile corresponds to an orientation described by the
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target azimuth and elevation start angles, angStartTgtAz and angStartTgtEl, respectively. An azimuth

angle of zero represents illumination from nose on and increasing azimuth is clockwise when viewed

from above the target. The target elevation is defined as zero in the plane of the target and a positive

value indicates a view angle from above the target (ARTI convention).

Multiple signature profiles within an output file are controlled by the angular spacing in the

azimuth and elevation directions, angSpacingAZ and angSpacingEl, and by the number of signature

profiles in the azimuth and elevation directions, numSigProfileAz and numSigProfileEl. The order of

signature profiles increment in the azimuth direction followed by the elevation direction. An example

using FORTRAN to read the frequency data is shown.

COMPLEX*8 vv, vh, hv, hh

irec = 7

DO i = 1, numSigProfileEl

DO j = 1, numSigProfileAz

DO k = 1, numFreqSamples

irec = irec + 1

READ(lundb, REC = irec) vv, vh, hv, hh

END DO

END DO

END DO

B.3 Utilities

The Utilities directory under xpatch contains routines to examine the xpatch output file and

perform an FFT of frequency samples in order to create a range profile. The routine dumpSP has the

following syntax:

dumpSP infile [azAngle] [elAnglel [numSig] [outfile]

where
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infile - name of xpatch output file

azAngle - azimuth angle of starting profile [default = 0.0]

elAngle - elevation angle of starting profile [default = 0.0]

numSig - number of consecutive signature profiles dumped [default = 1]

outfile - formatted output file (default = screen].
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Appendix C. SOURCE CODE

C.) Introduction

This appendix contains the source code for the subroutines that ar used for the Forward-

Backward Algorithm, the Viterbi Algorithm with logrithms, and the Baum-Welch reestimation algo-

rithm.

C.2 Forward-Backward Algorithm

The source code for the Forward-Backward algorithm follows the notation as presented in Section

2.4.12.1.
1* ** ** *** ** *** * ** *** * ** * *** * *** ** * **** * *** * ** *** ** ** * ** **

"• Subroutine: ForwardlBackward Algorithm
"• Date: 15 July 1992
"• Author: Capt Mark DeWitt

#include <stdio.h>
#include <math.h>
A these functions can be found in Numerical Recipies for C4
float ***tensor);
float **matrix(;
float *vector();
int **imatrixO;

void fwdbck(alpha, beta, C, P, a, b, piO, M, N, K, T)
float ***alpha, ***beta, *P, **a, **b, **C, *pi;
int **O, M, N, K, T;

A* input/ouput variable discription

inputs:
N: number of states
M: number of observation symbols
T: number of observations per observation sequence
K: number of observation sequences
0: observations (KxT int matrix with first index: 1)
pi: initial state probabilities (Nx l float vector first index: 1)
a: state transition probabilities (NxN float matrix first index: 1)
b: observation probabilities (NxM float matrix first index: I)

outputs:
alpha: forward variable coefficients (KxNxT float tensor first index: 1)
beta: backward variable coefficients (KxNxT float tensor first index: 1)
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C:- scaling ceflicients (KxT float matrix first index: 1)
P:, observation probabilities (Kx I float vector first index: 1) 4

f
int i, j, k, mn, t;
float prob;

1*Calculate the Scaled Alpha's and Beta's for all K observations using the Foward-Backward
Algorithms4

for(k=I; k<K; k++){

1* Calculate the alpha's for the k~th observation sequence4

CNkINt = 0.0;
if (t==I){

forfi=1; i<N; i-i+){/I*initialize4
Cfklftl += alpha[kI[i]ltI = pi~iI*b[iI[O(k1[QII;I /*end i*

} *end Wf
else{

for(j= 1; j•5N; j++){'IArecursion4
for(i=1, prob = 0.0; i<N; i+-.){

prob += a[i]fjj*alpha[k)[i][t- 1];} 1* end 4'
C[k][t] += alpha[kIUlltI = prob*bU[jIO[kI[t]];1 /*endj4
I A*end else4.

1* Scaling Factor 4
Ck[klt] = I/QjkI[tI;

/*scale alpha'sw
for(i=l; i < N; i++){

alpha[klliI(t] = C~kI(tI*alpha~k](i][tI;} I1* end ii
)I*end N4

1*Calculate the probability of the k~th observation sequence4
for(t = 1, Pfk]=0.0; t•<T; t+s+)
P[kJ += - (float)Jogl0((double)CQkI[t);)

A* Calculate the beta's for the k~th observation sequence'.'
for(t=T; t>Ž1; t- -)f

if(t ==T){
for(i = 1; i < N; i++){ /*initialize 4

beta[k][i][t] = 1.0 * C[k][t];}
A 'end if 4
else{

for(j = 1, prob = 0.0; j !5 N; j+i-){ I'.recursion4
prob += beta[k]U][t+1 ]'a[il]fj*bfj][O[k][t+1 1];) /'.endj4

beta[k][i][tJ = prob *Cjk][t] ;} Aiend i4
} A' end else 4
A1 end N4
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}A* end k and end fwd-bck calculations 4
}I*end fwdbck 4

C.3 Viterbi Algorithm with Logrithms

The source code for the Viterbi algorithm follows the notation presented in Section 2.4.12.2.
I** ****** ** ** ** *** *** *** *** *** ** ** **** *** * ****** * **** *** **

* Subroutine: Viterbi Algorithm
* Date: 15 July 1992
* Author: Capt Mark DeWitt

#include <stdio.h>
#include <math.h>
* these functions can be found in Numerical Recipies for C4

float ***tensoro;
float **matrixo;
float *vectorO;
int **imatrixO;
int *ivectorO;
void free-vectorO;

void viterbiiog(Q, Pvit, a, b, pi, 0, M, N, K, T)
float **a, **b, *pi, *Pvit;
int **O, M, N, K, T, **Q;

A* input/ouput variable discription

inputs:
N: number of states
M: number of observation symbols
T: number of observations per observation sequence
K: number of observation sequences
0: observations (KxT int matrix with first index: 1)
pi: initial state probabilities (Nxl float vector first index: 1)
a: state transition probabilities (NxN float matrix first index: I)
b: observation probabilities (NxM float matrix first index: 1)

outputs:
Q: most probable state sequence (KxT int matrix with first index: 1)
Pvit: probability of the best state sequence (Kxl float vector first index: 1) 4

\*NOTE: indxx(x ,y, z) is a sorting routine (see Numerical Recipies for C), where x is the number of
elements in the vector y to be sorted. z (ouput of indxx) is an int vector containing the indicies of the
elements in y in assending order.*/{
int i, j, k, m, t;
float **delta, *temp;
int **psi, *indx;
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1* allocate memory for the local variables 4
delta=matrix(1 ,N, 1,IT);
psi=imnalrix( I,N, 1 ,T);
temp=vector( 1,N);
indx=ivector( 1,N);

1* set all zero probabilities to le-20 4V
for(i = 1; i•<N; i++){

if(pi[i] ==0) pi[i] = I e-20;
forýj = 1; j :5 N; j++) if(a[i][] == 0.0) a[i][j] le-20;

I

for(k =1, Pvit[k] = 0.0; k !5 K; k++){

for(t = 1; t < T; t++){
if(t == I){I

delta[i][tI = (floatfllogl0((double)pi[iI) + IoglO((double)bliI[O[k][tlI));
psi[i][t] = 0;} /* end t 4

}I*end if 4
else{

for(i = 1;j i N;j-i-+){

temp[i] = delta[iIft- 1] +(float)IoglO((double)a[iI]j]);
indexx(N, temp, indx);
psiUj][t] = indxIIN];
deltaU[jIt] = ternp[indx[N)] + (float)IoglO((double)bWE[O[k][t]]);
/ * endj 4

} * end else 4
/ * end t 'V

for(.= T;tŽ> 1; t--
for(i = 1; 1 < N; i++) temp~i] = deltatil It];

indexx(N, temp, indx);
if(t == T) f{Q[kI[t] = indx[N];}

else {Qi~k][t] = psi[Qlkjlt+1]][t+I];}
) I*end t 4V

for(i = 1; i < N; i-i-i) tempti] = delta[i][T],
indexx(N, temp, indx);

Pvit[k] = deltallindx[N]][T];
} * end k 4

free-vcctor(temp, 1 ,N);
freeaivector(indx, 1 ,N);
freeinatrix(delta, 1IN, 1 ,T);
ftrecanatrix(psi, I,N, 1,T);
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C4 Buam-Weich Reestimation Algorithm

The source code for the Baum-Welch reestimation algorithm follows the notation presented in

Section 3.5. 1.

"* Subroutine: Buam-Weich Reestimation Algorithm
"* Date: 15 July 1992
"* Author: Capt Mark De Witt

#include <stdio.h>
#include <rnath.h>
A* these functions can be found in Numerical Recipies for C4
float ***tensoro;
float **matrixo;
float *vectorO);
int **imatrixo;
void fr-ee -natrixO;

void baum(alpha, beta, C, a, b, abar, bbar, pi, pibarO, M, N, K, T)

float ***alpha, ***beta, **a, **b, **C, *pi,**abar, **bbar, *pibar;
int **O, M, N, K, T;
A* input/ouput variable discription

inputs:
N:- number of states
M: number of observation symbols
T.: number of observations per observation sequence
K:- number of observation sequences
0: observations (KxT mnt matrix with first index: 1)
pi: initial state probabilities (NxlI float vector first index: 1)
a: state transition probabilities (NxN float matrix first index: 1)
b: observation probabilities (NxM float matrix first index: 1)
alpha: forward variable coefficients (KxNxT float tensor first index: 1)
beta: backward variable coefficients (KxNxT float tensor first index: 1)
C: scaling cefficients (KxT float m~atrix first index: 1)

outputs:
pi: updated initial state probabilities (NxlI float vector first index: 1)
a: ubdated state transition probabilities (NVxN float matrix first index: 1)
b: ubdated observation probabilities (NxM float matrix first index: 1)4

{
int i, j, k, m, t, tau;
double nuink, num, denk, den;
float prob;

1* update estimate of pi's V
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for(i =1; i :N; i++){
for(k = 1, nurnk = 0.0, denk =le-200; k < K; k++){

numnk += (alpba[kI[i]IIII *beta[k] [i][ 1 );
for(j = 1, den =0.0; j < N; j++)
den += (alpha[kjUjlj I*beta[kjUI(1 ID;

denk += den;

pibarl = (float)(nurnkldenk);

1* update estimate of a's, Equation (3.6)4

for(i = 1; i•5N; i++){
for 0 = 1; j •! N; j++){

for(k = 1, numnk = 0.0, denk = le-200; k < K; k++){
forQt = 1, num = le-200, den = le-200; t -< T- 1; t-.+){

num += alpba[kllu)Wt*a~i]Ij]*bljI(Olk[tllt+*beta[k]Wl~t+1]/QkIl~t);
den += alpha~k][i][tI*bctalkl[iI[tI/(C~kI[t]*C[kI[t]);
} IendtW

nurnk += num;
denk += den;
A 1 endk 4

abarlli]U] = (float)(numkl&Jnk);
I A* endj 4

A 1 end i 4

A* update estimate of b's, Equation (3.7) 4

forIj = I; j :5 N;j+i+){
for(m = 1;m < M; m++){
for(k = 1, nurnk = 0.0, denk = le-.200; k:• K; k++){

forQt = 1, nuin = le-200, den = le-200; t < T; t++){
if(m == O[kllt]) {num += alpba[k]U][t]*betalklU][t]/(C[kI[tI);}
den += alpha[k]UIII)*beta[kIUI[tII(CtkI~t]);

A/ end t 4
nunik += nurn;

denk +-- den;
} A* endk 4

bbar~j][m] = (float)( nurnk/ denk);
if(bbarU]Iinl < le- 10) bbarl]Im) le- 10;
) A* end m 4

} * endj 4
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